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Introduction and motivation

Hot and dense matter is formed in heavy-ion collisions: sQGP

An expanding hydrodynamical system

The particles after the freeze-out can be detected

HBT interferometry: the measurement of identical particle correlations

The width of the corr.function can be related to the size of the source

The strength of the correlation function is the intercept parameter λ
The λ can be a�ected by

UA(1) symmetry restoration, the core-halo picture

partial coherence

Aharonov-Bohm e�ect

The separate investigation of the 2- and 3-particle correlation can
provide information about the source
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The HBT-e�ect

The HBT-e�ect was discovered by R. H. Brown and R. Q. Twiss
Independently, pion correlation observed in p + p

Explained by Bose-Einstein symmetrization by Goldhaber et al.
Let's have a thermalized source and two detectors
From the source two (a and b) wave 1

|r−ra|αe
ik|r−ra|+iϕa and

1

|r−rb|
βe ik|r−rb|+iϕb travel to the detectors

The total amplitude is a+b in the detector A and B
The intensities in the detectors IA = |AA|2 and IB = |AB |2 and from
this the time average of the intensities and the 〈IAIB〉 if α = β,
d ,R � L:

〈IAIB〉
〈IA〉〈IB〉

− 1 =
1
2
cos

kRd

L
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Core-halo model (Heavy Ion Phys.15:1-80,2002)

De�nition: C2(p1, p2) = N2(p1,p2)
N1(p1)N1(p2) where N1(p1) =

∫
S(x1, p1)|Ψ1(x1)|2

and N2(p1, p2) =
∫
S(x1, p1)S(x2, p2)|Ψ1(x1)|2|Ψ2(x2)|2

Introduce q = p1 − p2, and K = (p1 + p2)/2 and assume p1 ≈ p2
Source function can be written in two part: S(x , p) = Sc(x , p) + Sh(x , p)

C2(q,K) = 1 +
|S̃(q,K)|2

|S̃(q = 0,K)|2
≈ 1 + λ

|S̃c(q,K)|2

|S̃c(q = 0,K)|2
where λ =

(
Nc

Nc + Nh

)2
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UA(1) symmetry restoration (Heavy Ion Phys.15:1-80,2002)

Source can be split up into a hydro expanding core and a halo
The UA(1) symmetry might be partially restored
Hot dense matter: mη′ drops → more η′ is produced
From η′ → π+ + π+ + π− + π− + π0 more π are produced
The πs have pt ≈ 150− 200 MeV and contribute to the halo
πs from the halo do not correlated with the core's πs
Value of the λ drops
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Partial coherence (Heavy Ion Phys.15:1-80,2002)

In the core-halo model the core is thermalized and fully incoherent

One can assume that the core may emit bosons coherently:
S(x , p) = S

p
c (x , p) + S i

c(x , p) + Sh(x , p)

Momentum dependent core and partially coherent fraction can be
introduced

fc(k) =

∫
Sc(x , k)d4x∫
S(x , k)d4x

pc(k) =

∫
S
p
c (x , k)d4x∫
Sc(x , k)d4x

λs can be expressed with these

C2(0)− 1 = λ2 = f 2c [(1− pc)2 + 2pc(1− pc)]

C3(0)− 1 = λ3 = 3f 2c [(1− pc)2 + 2pc(1− pc)] + 2f 3c [(1− pc)3 + 3pc(1− pc)2]

The combination: λ3−3λ2
λ
3/2
2

does not depend on the core-halo fraction
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Aharonov-Bohm e�ect in particle correlations

Aharonov-Bohm e�ect:
Early observation: electrically charged particle is a�ected by an EM
potential in a region where the E and B are zero.
Experimental veri�cation by e.g. Chambers (1960 PRL.5), Tonomura
et al. (1986 PRL.56)
If a particle moves on a closed path in a �eld it picks up path
dependent phase factor

Aharonov-Bohm e�ect in our case:
The correlation can be obtained from a closed-path
The result is sensitive to the �uxes going through the closed path
Phenomenologically the propagating pion waves pick up phases

7 / 16



Two pion correlation in random �eld

Aharonov-Bohm e�ect in our case:

Random phase have to be applied to the wave-functions Φa(r), Φb(r)

Have to be calculated: 〈|Φ2(rA,rB)|2〉
〈|Φa(r)|2〉〈|Φb(r)|2〉 − 1

The time average of the two-particle wave function gets a phase

φ: the total phase picked up. Let introduce ∆k = kd/L!

〈|Φ2(rA, rB)|2〉
〈|Φa(r)|2〉〈|Φb(r)|2〉

− 1 = cos (R∆k + φ)

Can be regarded as a 0-centered Gaussian: e−
φ

2σ2

Average on φ

〈|Φ2(rA, rB)|2〉
〈|Φa(r)|2〉〈|Φb(r)|2〉

− 1 = cos (R∆k) e−
σ2

2
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Three pion correlation in random �eld

〈|Φ2(rA, rB , rC )|2〉 are calculated there will be:
6 terms like exp[ik(raA + rbB + rcC ) + i(φaA + φbB + φcC )] = 1
3x6 terms which belong to the pair-correlation where e.g.
raA + rbB + rcC and raB + rbA + rcC meet
12 "almost" pair-correlation like terms where e.g. raB + rbC + rcA and
raB + rbA + rcC meet
12 terms which contain nine paths: nine iφxX like terms
Previously introduce the φ as a sum of four φxX like phases with a
Gaussian distribution: e−φ

2/(2σ)2

Based on the summing of random variable while the nine-path term

e
− φ2

(2(2σ/3)2)

The �nal result from the calculation
〈|Φ3|2〉

〈|Φa|2〉〈|Φb|2〉〈|Φc |2〉
− 1 =

1

6

(
6 + 18e−

σ2

2 + 12e−
(2σ/3)2

2

)
− 1 = 3e−

σ2

2 + 2e−
2σ2

9
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Toy model

Hubble expanding source made of uniformly distributed charges with a
probe charge in the middle of the source
Probe particle: given momentum with lot of random charge
distribution
Relativistic motion of probe particle through Coulomb �eld of the
expanding charge cloud
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Toy model

Charge cloud accelerates or decelerates probe
Momentum changes in time:

Time to reach a given location �uctuates
Random phase shift equivalent to time shift
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Toy model � σ(pinit)

Time shift distribution ↔ random phase shift distribution
An example at pinit = 175 MeV/c
Momentum dependence can be analyzed

σt
p2

~
√

m2+p2
= σφ
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Toy model � λ2, λ3

Midrapidity p → pt
The width of the phase ∼ the cross section of the outgoing pion
The σt function is known from the �t
The σφ = σtp2t

~
√

m2+p2
from the �t σφ ∼ p−0.55t

~
√

m2+p2

Plot the derived: λ2 → e−
σ2

2 and λ3 → 3e−
σ2

2 + 2e−
2σ2

9

To be compared to experimental results
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Toy model � a combination of λs

In our calculation Nch = 100 and Rinit = 5 fm
Let us introduce κ3 = λ3−3λ2

λ
3/2
2

Quanti�es "pure" three-particle correlations
Does not depend on core/halo fraction!

E.g. core/halo + partial coherence case κ3 = 2((1−pc)3+3pc(1−pc)2)

((1−pc)2+2pc(1−pc))3/2
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Toy model � σ(ρch)

How does the width depend on the ρch?
Distribute di�erent number of charges in the source size R = 5 fm
The width depends more-or-less linearly on the density
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Summary

The Aharonov-Bohm e�ect can play role in the HBT-interferometry

Theoretically can be calculated by introducing random phase on the
path of the particle

Phase distribution determined from toy model simulations

Phase distribution width decreases with increasing momentum

The e�ect increases with the Nch more-or-less linearly

E�ect on two-and three-particle correlations di�erent

Separating the e�ect: κ3 = ... = 2 if only core/halo

κ3 < 2 if nonzero coherent fraction

Our results: κ3 > 2 if pc = 0

Thank you for your attention!
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