Bose-Einstein correlations in random field

Antal Jakovác, Máté Csanád and Sándor Lökös

Eötvös University, Budapest, Hungary

ACHT 2016, Čakovec

Introduction and motivation

- Hot and dense matter is formed in heavy-ion collisions: sQGP
- An expanding hydrodynamical system
- The particles after the freeze-out can be detected
- HBT interferometry: the measurement of identical particle correlations
- The width of the corr.function can be related to the size of the source
- The strength of the correlation function is the intercept parameter λ
- The λ can be affected by
- $U_{A}(1)$ symmetry restoration, the core-halo picture
- partial coherence
- Aharonov-Bohm effect
- The separate investigation of the 2- and 3-particle correlation can provide information about the source

The HBT-effect

- The HBT-effect was discovered by R. H. Brown and R. Q. Twiss
- Independently, pion correlation observed in $p+\bar{p}$
- Explained by Bose-Einstein symmetrization by Goldhaber et al.
- Let's have a thermalized source and two detectors
- From the source two (a and b) wave $\frac{1}{\left|r-r_{a}\right|} \alpha e^{i k\left|r-r_{a}\right|+i \varphi_{a}}$ and $\frac{1}{\left|r-r_{b}\right|} \beta e^{i k\left|r-r_{b}\right|+i \varphi_{b}}$ travel to the detectors
- The total amplitude is $\mathrm{a}+\mathrm{b}$ in the detector A and B
- The intensities in the detectors $I_{A}=\left|A_{A}\right|^{2}$ and $I_{B}=\left|A_{B}\right|^{2}$ and from this the time average of the intensities and the $\left\langle I_{A} I_{B}\right\rangle$ if $\alpha=\beta$, $d, R \ll L$:

$$
\frac{\left\langle I_{A} I_{B}\right\rangle}{\left\langle I_{A}\right\rangle\left\langle I_{B}\right\rangle}-1=\frac{1}{2} \cos \frac{k R d}{L}
$$

Core-halo model (Heavy Ion Phys.15:1-80,2002)

- Definition: $C_{2}\left(p_{1}, p_{2}\right)=\frac{N_{2}\left(p_{1}, p_{2}\right)}{N_{1}\left(p_{1}\right) N_{1}\left(p_{2}\right)}$ where $N_{1}\left(p_{1}\right)=\int S\left(x_{1}, p_{1}\right)\left|\Psi_{1}\left(x_{1}\right)\right|^{2}$ and $N_{2}\left(p_{1}, p_{2}\right)=\int S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left|\Psi_{1}\left(x_{1}\right)\right|^{2}\left|\Psi_{2}\left(x_{2}\right)\right|^{2}$
- Introduce $q=p_{1}-p_{2}$, and $K=\left(p_{1}+p_{2}\right) / 2$ and assume $p_{1} \approx p_{2}$
- Source function can be written in two part: $S(x, p)=S_{c}(x, p)+S_{h}(x, p)$

$$
C_{2}(q, K)=1+\frac{|\tilde{S}(q, K)|^{2}}{|\tilde{S}(q=0, K)|^{2}} \approx 1+\lambda \frac{\left|\tilde{S}_{c}(q, K)\right|^{2}}{\left|\tilde{S}_{c}(q=0, K)\right|^{2}} \text { where } \lambda=\left(\frac{N_{c}}{N_{c}+N_{h}}\right)^{2}
$$

$U_{A}(1)$ symmetry restoration (Heavy Ion Phys.15:1-80,2002)

- Source can be split up into a hydro expanding core and a halo
- The $U_{A}(1)$ symmetry might be partially restored
- Hot dense matter: $m_{\eta^{\prime}}$ drops \rightarrow more η^{\prime} is produced
- From $\eta^{\prime} \rightarrow \pi^{+}+\pi^{+}+\pi^{-}+\pi^{-}+\pi^{0}$ more π are produced
- The $\pi \mathrm{s}$ have $p_{t} \approx 150-200 \mathrm{MeV}$ and contribute to the halo
- $\pi \mathrm{s}$ from the halo do not correlated with the core's $\pi \mathrm{s}$
- Value of the λ drops

Partial coherence (Heavy Ion Phys.15:1-80,2002)

- In the core-halo model the core is thermalized and fully incoherent
- One can assume that the core may emit bosons coherently: $S(x, p)=S_{c}^{p}(x, p)+S_{c}^{i}(x, p)+S_{h}(x, p)$
- Momentum dependent core and partially coherent fraction can be introduced

$$
f_{c}(k)=\frac{\int S_{c}(x, k) d^{4} x}{\int S(x, k) d^{4} x} \quad p_{c}(k)=\frac{\int S_{c}^{p}(x, k) d^{4} x}{\int S_{c}(x, k) d^{4} x}
$$

- λs can be expressed with these

$$
\begin{aligned}
& C_{2}(0)-1=\lambda_{2}=f_{c}^{2}\left[\left(1-p_{c}\right)^{2}+2 p_{c}\left(1-p_{c}\right)\right] \\
& C_{3}(0)-1=\lambda_{3}=3 f_{c}^{2}\left[\left(1-p_{c}\right)^{2}+2 p_{c}\left(1-p_{c}\right)\right]+2 f_{c}^{3}\left[\left(1-p_{c}\right)^{3}+3 p_{c}\left(1-p_{c}\right)^{2}\right]
\end{aligned}
$$

- The combination: $\frac{\lambda_{3}-3 \lambda_{2}}{\lambda_{2}^{3 / 2}}$ does not depend on the core-halo fraction

Aharonov-Bohm effect in particle correlations

Aharonov-Bohm effect:

- Early observation: electrically charged particle is affected by an EM potential in a region where the E and B are zero.
- Experimental verification by e.g. Chambers (1960 PRL.5), Tonomura et al. (1986 PRL.56)
- If a particle moves on a closed path in a field it picks up path dependent phase factor
Aharonov-Bohm effect in our case:
- The correlation can be obtained from a closed-path
- The result is sensitive to the fluxes going through the closed path
- Phenomenologically the propagating pion waves pick up phases

Two pion correlation in random field

Aharonov-Bohm effect in our case:

- Random phase have to be applied to the wave-functions $\Phi_{a}(r), \Phi_{b}(r)$
- Have to be calculated: $\frac{\left.\left.\langle | \Phi_{2}\left(r_{A}, r_{B}\right)\right|^{2}\right\rangle}{\left.\left.\left.\langle | \Phi_{a}(r)\right|^{2}\right\rangle\left.\langle | \Phi_{b}(r)\right|^{2}\right\rangle}-1$
- The time average of the two-particle wave function gets a phase
- ϕ : the total phase picked up. Let introduce $\Delta k=k d / L$!

$$
\frac{\left.\left.\langle | \Phi_{2}\left(r_{A}, r_{B}\right)\right|^{2}\right\rangle}{\left.\left.\left.\langle | \Phi_{a}(r)\right|^{2}\right\rangle\left.\langle | \Phi_{b}(r)\right|^{2}\right\rangle}-1=\cos (R \Delta k+\phi)
$$

- Can be regarded as a 0-centered Gaussian: $e^{-\frac{\phi}{2 \sigma^{2}}}$
- Average on ϕ

$$
\frac{\left.\left.\langle | \Phi_{2}\left(r_{A}, r_{B}\right)\right|^{2}\right\rangle}{\left.\left.\left.\langle | \Phi_{a}(r)\right|^{2}\right\rangle\left.\langle | \Phi_{b}(r)\right|^{2}\right\rangle}-1=\cos (R \Delta k) e^{-\frac{\sigma^{2}}{2}}
$$

Three pion correlation in random field

$\left.\left.\langle | \Phi_{2}\left(r_{A}, r_{B}, r_{C}\right)\right|^{2}\right\rangle$ are calculated there will be:

- 6 terms like $\exp \left[i k\left(r_{a A}+r_{b B}+r_{c} C\right)+i\left(\phi_{a A}+\phi_{b B}+\phi_{c} C\right)\right]=1$
- 3×6 terms which belong to the pair-correlation where e.g. $r_{a A}+r_{b B}+r_{c} C$ and $r_{a B}+r_{b A}+r_{c} C$ meet
- 12 "almost" pair-correlation like terms where e.g. $r_{a B}+r_{b C}+r_{c A}$ and $r_{a B}+r_{b A}+r_{c} C$ meet
- 12 terms which contain nine paths: nine $i \phi_{\mathrm{xx}}$ like terms
- Previously introduce the ϕ as a sum of four ϕ_{x} like phases with a Gaussian distribution: $e^{-\phi^{2} /(2 \sigma)^{2}}$
- Based on the summing of random variable while the nine-path term $e^{-\frac{\phi^{2}}{\left(2(2 \sigma / 3)^{2}\right)}}$
The final result from the calculation

$$
\frac{\left.\left.\langle | \Phi_{3}\right|^{2}\right\rangle}{\left.\left.\left.\left.\langle | \Phi_{a}\right|^{2}\right\rangle\left.\langle | \Phi_{b}\right|^{2}\right\rangle\left.\langle | \Phi_{c}\right|^{2}\right\rangle}-1=\frac{1}{6}\left(6+18 e^{-\frac{\sigma^{2}}{2}}+12 e^{-\frac{(2 \sigma / 3)^{2}}{2}}\right)-1=3 e^{-\frac{\sigma^{2}}{2}}+2 e^{-\frac{2 \sigma^{2}}{9}}
$$

Toy model

- Hubble expanding source made of uniformly distributed charges with a probe charge in the middle of the source
- Probe particle: given momentum with lot of random charge distribution
- Relativistic motion of probe particle through Coulomb field of the expanding charge cloud

Toy model

- Charge cloud accelerates or decelerates probe
- Momentum changes in time:

- Time to reach a given location fluctuates
- Random phase shift equivalent to time shift

Toy model $-\sigma\left(p_{\text {init }}\right)$

- Time shift distribution \leftrightarrow random phase shift distribution
- An example at $p_{\text {init }}=175 \mathrm{MeV} / \mathrm{c}$
- Momentum dependence can be analyzed
- $\sigma_{t} \frac{p^{2}}{\hbar \sqrt{m^{2}+p^{2}}}=\sigma_{\phi}$

Power-law fit to $\sigma \mathrm{s}$

Toy model $-\lambda_{2}, \lambda_{3}$

- Midrapidity $p \rightarrow p_{t}$
- The width of the phase \sim the cross section of the outgoing pion
- The σ_{t} function is known from the fit
- The $\sigma_{\phi}=\frac{\sigma_{t} p_{t}^{2}}{\hbar \sqrt{m^{2}+p^{2}}}$ from the fit $\sigma_{\phi} \sim \frac{p_{t}^{-0.55}}{\hbar \sqrt{m^{2}+p^{2}}}$
- Plot the derived: $\lambda_{2} \rightarrow e^{-\frac{\sigma^{2}}{2}}$ and $\lambda_{3} \rightarrow 3 e^{-\frac{\sigma^{2}}{2}}+2 e^{-\frac{2 \sigma^{2}}{9}}$
- To be compared to experimental results

Toy model - a combination of λs

- In our calculation $N_{\text {ch }}=100$ and $R_{\text {init }}=5 \mathrm{fm}$
- Let us introduce $\kappa_{3}=\frac{\lambda_{3}-3 \lambda_{2}}{\lambda_{2}^{3 / 2}}$
- Quantifies "pure" three-particle correlations
- Does not depend on core/halo fraction!
- E.g. core/halo + partial coherence case $\kappa_{3}=\frac{2\left(\left(1-p_{c}\right)^{3}+3 p_{c}\left(1-p_{c}\right)^{2}\right)}{\left(\left(1-p_{c}\right)^{2}+2 p_{c}\left(1-p_{c}\right)\right)^{3 / 2}}$

Toy model $-\sigma\left(\rho_{\mathrm{ch}}\right)$

- How does the width depend on the ρ_{ch} ?
- Distribute different number of charges in the source size $R=5 \mathrm{fm}$
- The width depends more-or-less linearly on the density

Summary

- The Aharonov-Bohm effect can play role in the HBT-interferometry
- Theoretically can be calculated by introducing random phase on the path of the particle
- Phase distribution determined from toy model simulations
- Phase distribution width decreases with increasing momentum
- The effect increases with the $N_{\text {ch }}$ more-or-less linearly
- Effect on two-and three-particle correlations different
- Separating the effect: $\kappa_{3}=\ldots=2$ if only core/halo
- $\kappa_{3}<2$ if nonzero coherent fraction
- Our results: $\kappa_{3}>2$ if $p_{c}=0$

Thank you for your attention!

