Description of multipole asymmetries with the Buda-Lund hydrodynamical model

Máté Csanád, Sándor Lökös, Boris Tomášik and Tamás Csörgő

Banska Bystrica, 2015
based on the WPCF presentation

Introduction

- QGP behaves like perfect fluid \rightarrow hydro description
- Finite number of nucleons \rightarrow generalized geometry is nescessary
- Generalize the space-time and the velocity field distribution
- Higher order flows can be investigated
- HBT radii have $\cos (n \phi)$ dependences in the respective reaction plane
- These can be studied experimentally:

Nucl.Phys. A904-905 (2013) 439c-442c
Phys.Rev.Lett. 112 (2014) 22, 222301

The Buda-Lund model

Phys.Rev. C54 (1996) 1390 and Nucl.Phys. A742 (2004) 80-94

- Hydro-model: $S(x, p)=\frac{g}{(2 \pi)^{3}} \frac{p^{\nu} d^{4} \Sigma_{\nu}(x)}{B(x, p)+s_{q}}$ where
$B(x, p)=\exp \left[\frac{p^{\nu} u_{\nu}(x)-\mu(x)}{T(x)}\right]$ is the Boltzmann phase-space distribution and the $p^{\nu} d^{4} \Sigma_{\nu}(x)=p^{\nu} u_{\nu} H(\tau) d^{4} x$
- In this case

$$
H(\tau)=\frac{1}{\sqrt{\left(2 \pi \Delta \tau^{2}\right)}} e^{-\frac{\left(\tau-\tau_{0}\right)^{2}}{2 \Delta \tau^{2}}}
$$

- Later I will assume $\Delta \tau^{2} \rightarrow 0$ so $H(\tau)=\delta\left(\tau-\tau_{0}\right)$.
- There is a Gaussian-profile in fugacity and temperature profile with $a^{2}=\frac{T_{0}-T_{s}}{T_{s}}$

$$
\frac{\mu(x)}{T(x)}=\frac{\mu_{0}}{T_{0}}-b s \quad \frac{1}{T(x)}=\frac{1}{T_{0}}\left(1+a^{2} s\right)
$$

The Buda-Lund model

- Spatial elliptical asymmetry is ensured by the scaling variable

$$
s=\frac{r_{x}^{2}}{2 X^{2}}+\frac{r_{y}^{2}}{2 Y^{2}}+\frac{r_{z}^{2}}{2 Z^{2}} \rightarrow \frac{r^{2}}{2 R^{2}}\left(1+\epsilon_{2} \cos (2 \phi)\right)+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- The asymmetry in the velocity field is also elliptical

$$
\begin{aligned}
u_{\mu}= & \left(\gamma, r_{x} \frac{\dot{X}}{X}, r_{y} \frac{\dot{Y}}{Y}, r_{z} \frac{\dot{Z}}{Z}\right) \rightarrow \\
& \rightarrow\left(\gamma, r H\left(1+\chi_{2}\right) \cos (\phi), r H\left(1-\chi_{2}\right) \sin (\phi), H_{z} r_{z}\right)
\end{aligned}
$$

With all of these definition an analytic model can be derived from a saddle-point-approximate form of source function

$$
S(x, k) d^{4} x=\frac{g}{(2 \pi)^{3}} \frac{p_{\mu} u^{\mu}\left(x_{s}\right) \delta\left(\tau-\tau_{0}\right)}{B\left(x_{s}, p\right)} e^{R_{\mu \nu}^{-2}\left(x-x_{s}\right)^{\mu}\left(x-x_{s}\right)^{\nu}} d^{4} x
$$

Generalization of the model I.

- The spatial asymmetry is described by the scaling variable
- General n-pole spatial asymmetry (elliptical case: $n=2$):

$$
s=\frac{r^{2}}{2 R^{2}}\left(1+\sum_{n} \epsilon_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- Ψ_{n} is the angle of the n-th order reaction plane

Generalization of the model II.

- Derive the velocity field from a potential: $u_{\mu}=\gamma\left(1, \partial_{x} \Phi, \partial_{y} \Phi, \partial_{z} \Phi\right)$
- General n-pole asymmetrical potential (elliptical case: $n=2$):

$$
\Phi=H r^{2}\left(1+\sum_{n} \chi_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)+H_{z} r_{z}^{2}
$$

- There is multipole solution: Phys.Rev.C90,054911 (2014) based on HeavylonPhys.A21:73-84,2004

Observables at freeze-out

- Invariant transverse momentum distribution, flows, azimuthally sensitive HBT radii
- All asymmetries are investigated in their respective reaction plane
- Rotate the system to the second / third order plane and average on the angle of the third / second order plane
- The proper parameters can be set to zero

Averaging on event planes

Very simply model: $S(x)=e^{-s}$

- Let the $s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos \left(2 \phi-\Psi_{2}\right)+\epsilon_{3} \cos \left(3 \phi-\Psi_{3}\right)\right)+\frac{r_{z}^{2}}{Z^{2}}$
- If we rotate the system to the second order event plane:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos (2 \phi)+\epsilon_{3} \cos \left(3 \phi-\Delta \Psi_{2,3}\right)\right)+\frac{r_{z}^{2}}{Z^{2}}
$$

- If we rotate the system to the third order event plane:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos \left(2 \phi+\Delta \Psi_{2,3}\right)+\epsilon_{3} \cos (3 \phi)\right)+\frac{r_{z}^{2}}{Z^{2}}
$$

where $\Delta \Psi_{2,3}=\Psi_{3}-\Psi_{2}$.

Averaging on event planes

There is two possibilites:

- Set to zero the parameter directly

$$
\int d \phi S(x)=2 \pi e^{-\frac{r^{2}}{R^{2}}} I_{0}\left(\epsilon_{2} \frac{r^{2}}{R^{2}}\right)
$$

- Averaging on $\Delta \Psi_{2,3}=\Psi_{3}-\Psi_{2}$

$$
\int d \phi S_{a v}(x)=2 \pi e^{-\frac{r^{2}}{R^{2}}} I_{0}\left(\epsilon_{2} \frac{r^{2}}{R^{2}}\right) I_{0}\left(\epsilon_{3} \frac{r^{2}}{R^{2}}\right)
$$

- There is a difference in the "real case" too

Earlier results

Fits with elliptical Buda Lund model: Eur.Phys.J. A47 (2011) 58-66

Value of the parameters

Meaning	Sign	Value
Mass of the particle	m	140 MeV
Freeze-out time	τ_{0}	$7 \mathrm{fm} / \mathrm{c}$
Freeze-out temperature	T_{0}	170 MeV
Temperature-asymmetry parameter	a^{2}	0.3
Spatial slope parameter	b	-0.1
Transverse size of the source	R	10 fm
Longitudinal size of the source	Z	15 fm
Velocity-space transverse size	H	$10 \mathrm{c} / \mathrm{fm}$
Velocity-space longitudinal size	H_{z}	$16 \mathrm{c} / \mathrm{fm}$
Elliptical spatial asymmetry parameter	ϵ_{2}	0.0
Triangular spatial asymmetry parameter	ϵ_{3}	0.0
Elliptical velocity-field asymmetry parameter	χ_{2}	0.0
Triangular velocity-field asymmetry parameter	χ_{3}	0.0

Usually one anisotropy parameter is varied, and the others are kept zero

Invariant momentum distribution

Significant change could be at high p_{t}, the log slope is not affected strongly

About the spectra

Plot the N_{1} with non zero coefficient divide by N_{1} with zero coefficient

Flows

Elliptic and triangular flows are affected by their own asymmetry parameters

Mixing of parameters

- The parameters affect the flows together
- The generalization of velocity field is nescessary

HBT radii

- Calculate in the out - side - long system

$$
R_{\text {out }}^{2}=\left\langle r_{\text {out }}^{2}\right\rangle-\left\langle r_{\text {out }}\right\rangle^{2} \text { and } R_{\text {side }}^{2}=\left\langle r_{\text {side }}^{2}\right\rangle-\left\langle r_{\text {side }}\right\rangle^{2}
$$

where $r_{\text {out }}=r \cos (\phi-\alpha)-\beta_{t} t$ and $r_{\text {side }}=r \sin (\phi-\alpha)$
\rightarrow C. J. Plumberg, C. Shen, U. W. Heinz Phys.Rev. C88 (2013) 044914

- There can be higher order parts
\rightarrow B. Tomášik and U. A. Wiedemann, in QGP3, pp. 715-777.
- We use the following parameterization in
- elliptical case:

$$
R_{\mathrm{out}}^{2}=R_{\mathrm{out}, 0}^{2}+R_{\mathrm{out}, 2}^{2} \cos (2 \alpha)++R_{\mathrm{out}, 4}^{2} \cos (4 \alpha)+R_{\mathrm{out}, 6}^{2} \cos (6 \alpha)
$$

- triangular case:

$$
R_{\mathrm{out}}^{2}=R_{\mathrm{out}, 0}^{2}+R_{\mathrm{out}, 3}^{2} \cos (3 \alpha)+R_{\mathrm{out}, 6}^{2} \cos (6 \alpha)+R_{\mathrm{out}, 9}^{2} \cos (9 \alpha)
$$

- Similar to the $R_{\text {side }}^{2}$

Results of the parametrization - Second order case

This case already have investigated: Eur.Phys.J.A37:111-119,2008 Mainly $\cos (2 \phi)$ behavior but higher order oscillations are also present

Results of the parametrization - Third order case

Mainly $\cos (3 \phi)$ behavior but higher order oscillations are also present

Mixing of the parameters

The dependence of the amplitudes of the $R_{\text {out }}^{2}$ and $R_{\text {side }}^{2}$ in the second order case

Higher order amplitudes

Second order:

Mixing of the parameters

The dependence of the amplitudes of the $R_{\text {out }}^{2}$ and $R_{\text {side }}^{2}$ in the third order case

Higher order amplitudes

Third order:

Conclusions

- Generalization of u^{μ} and s with $u^{\mu} \partial_{\mu} s=0$ kept valid
- The dynamics of the parameters can be obtained
- Absolute value of the azimuthal HBT radii depend on asymmetries
- Higher order oscillation can be observed in HBT radii
- The spatial and velocity field anisotropies both influence the v_{n} coefficient and the HBT radii
- The asymmetry parameters can be disentangle from the flows and the amplitudes

Thank you for your attention!

