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Received: 1 May 2016
Published online: 13 October 2016 – c© Società Italiana di Fisica / Springer-Verlag 2016
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Abstract. The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed
elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball
shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated
into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-
space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we
detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow
coefficients and oscillations of HBT radii.

1 Introduction

Anisotropies in distributions of hadrons produced in ultra-
relativistic heavy-ion collisions are the key observable in
the quest for the transport properties of the hot strongly
interacting matter. Through a careful comparison of mea-
sured data with theoretical predictions access is open to
the values of shear and bulk viscosity, the equation of
state, equilibration time, and other properties of the mat-
ter. Distributions of hadrons are formed at the very last
moment of fireball history when all hadrons leave from the
hot and strongly coupled system. It is therefore instruc-
tive to understand how the observed anisotropies of the
momentum distribution are connected to the shape and
the expansion pattern of the fireball at freeze-out. Help-
ful tools for this task are the hydrodynamically inspired
models of hadron production which allow for easy simu-
lation of different final states of the fireball. Here we will
use a model that is in close connection to exact solutions
of hydrodynamics as well —the Buda-Lund model [1, 2].

There are two kinds of source anisotropies which are
translated into the anisotropy of hadron distributions.
One is connected with the shape of the fireball and the
other with the angular dependence of its expansion veloc-
ity. It has been investigated in the past how they both
individually contribute to the second-order anisotropy of
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single-particle distributions and oscillations of correlation
radii in femtoscopy [3, 4].

Unprecedented statistics collected in nuclear collisions
at the LHC and at RHIC allow also detailed study of
higher-order anisotropies and higher-order oscillations of
Bose-Einstein correlation radii [5–8]. There is at present
no sufficient theoretical understanding of the femtoscopic
measurements.

To this end, we extend here the Buda-Lund model so
that it includes the third-order anisotropy in shape and
expansion velocity. Then we give an outlook at the exten-
sion to even higher orders. We further calculate the third-
order angular dependence of the spectra and correlation
radii and analyze how it is influenced by the different fea-
tures of the model.

The model provides description of direct hadron pro-
duction without the inclusion of resonance decays. Al-
though resonances are not included in our current investi-
gation, we note that the core-halo model was developed to
correct the hydrodynamical and phenomenological calcu-
lations, similar to the ones presented here, to take into ac-
count the effects of decays from long-lived resonances [9].
Long-lived resonances decay in a halo region, character-
ized by large length scales (typically 20 fm or larger) that
are outside the hydrodynamically evolving, hot and dense
hadronic matter, that is referred to as the core region.
Comparing the core-halo model calculations to experi-
mental data, the main effects of resonances appear to be



Page 2 of 10 Eur. Phys. J. A (2016) 52: 311

the modification of the single-particle spectra of pions,
and the suppression of the strength of the two-pion Bose-
Einstein correlations, however, their effects on the short-
range Bose-Einstein correlation or HBT radii and on the
anisotropies of the single-particle spectra are negligible, as
indicated by the hydrodynamical scaling of these observ-
ables [2, 10,11].

2 The Buda-Lund model

The Buda-Lund model is formulated in terms of the
source function, which represents the (Wigner) proba-
bility density of particle creation at a space-time point
x = (t, rx, ry, rz) and four-momentum p = (E, px, py, pz).
It generally takes the form of a Jüttner-type statistical
distribution

S(x, k)d4x =
g

(2π)3
pµd4Σµ(x)

B(x, p) + sq

, (1)

where g stands for degeneracy factor, pµd4Σµ is the
Cooper-Frye factor [12], sq is a quantum-statistical term,
being −1 for Bose-Einstein, 1 for Fermi-Dirac statistics,
and 0 for Maxwell-Boltzmann statistics, and the thermo-
dynamic distribution B(x, p) takes the form

B(x, p) = exp

[

pµuµ(x)

T (x)
− μ(x)

T (x)

]

. (2)

The freeze-out in this model happens along the hypersur-
face perpendicular to the flow velocity and the Cooper-
Frye factor is expressed as [2]

pµd4Σµ(x) = pµuµ(x)H(τ)d4x, (3)

where H(τ) is the freeze-out probability density in proper
time, with τ being the proper time in the local frame
co-moving with the velocity uµ. The smearing factor of
the freeze-out time will be assumed to take the form of a
delta function: H(τ) = δ(τ−τ0). This simplification corre-
sponds to the approximation when the freeze-out happens
suddenly at τ0 freeze-out time.

The velocity field is calculated from a potential Φ(x)

uµ = γ(1,v) = γ(1, ∂xΦ, ∂yΦ, ∂zΦ), (4)

where γ = 1/
√

1 − (∂xΦ)2 − (∂yΦ)2 − (∂zΦ)2. With the
potential field we shall be able to introduce azimuthal an-
gle variations of the expansion velocity field.

The model includes gradients in temperature profile

1

T (x)
=

1

T0

(

1 + a2s
)

, (5)

where a parametrizes the gradient and s is a scaling vari-
able which depends on spatial coordinates and will be
specified later. The parameter a2 can also be expressed
as

a2 =
T0 − Ts

Ts

, (6)

where T0 is the central temperature and Ts is the temper-
ature at the surface of the fireball. The scaling variable s
is important when the parametrization is identified as a
solution of a certain class of hydrodynamic models [13,14].
In such a case, its co-moving derivative must vanish,

uµ∂µs = 0. (7)

The fugacity term is defined similarly,

μ(x)

T (x)
=

μ0

T0

− bs, (8)

i.e. the parameter b is the density gradient. (Note that
b = 1 was assumed in earlier versions of the Buda-Lund
model.)

Next we extend the previous formulation of the Buda-
Lund model so that anisotropy in azimuthal angle up to
third order is included.

There are two kinds of asymmetries which we investi-
gate in this paper: the spatial asymmetry and the velocity
field asymmetry. The former can be described by the scale
variable s. For completeness and for the sake of example
let us review that the perfectly symmetric case (not inves-
tigated here) would be that of spherical symmetry with

s =
r2
x + r2

y + r2
z

R2
◦

(9)

and the spheroidal symmetry with distinguished longitu-
dinal direction

s =
r2

R2
+

r2
z

Z2
, (10)

with r2 = r2
x+r2

y. Depending on the model, R◦ and/or R is
the radial scale and Z is the longitudinal scale. Ellipsoidal
symmetry would be then represented by

s =
r2
x

X2
+

r2
y

Y 2
+

r2
z

Z2
. (11)

The anisotropy in transverse shape can be introduced
for the elliptic deformation (second order) also like

s =
r2

R2
(1 + ǫ2 cos(2α)) +

r2
z

Z2
, (12)

with cos α = rx/r, and a connection to the transverse
principal axes of the ellipsoid (X,Y ) can be established
via X = R/

√
1 + ǫ2 and Y = R/

√
1 − ǫ2. A triangular

deformation (third order) can also be introduced as

s =
r2

R2
(1 + ǫ3 cos(3α)) +

r2
z

Z2
. (13)

The extension to asymmetry of arbitrary order is straight-
forward

s =
r2

R2

(

1 +
∑

n

ǫn cos (n(α − αn))

)

+
r2
z

Z2
, (14)
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similarly to ref. [14]. The phase factors αn must generally
be included to reflect the different orientation of the n-th–
order event planes. Their influence will be investigated in
more detail in sect. 4.

The expansion velocity field is obtained via eq. (4)
from the potential Φ(x). We generalize now the
parametrization for Φ(x) in a similar way as we did for
the scaling variable. Let us connect with previous works
by recalling that for the spherically symmetric case one
chooses

Φ(x) =
H◦

2
r2, v = (H◦rx,H◦ry,H◦rz) , (15)

where H◦ is the radial Hubble-parameter, and eq. (7) with

s from (9) can be fulfilled via the choice of H◦ = Ṙ◦

2R◦

. The
velocity profile with ellipsoidal expansion symmetry has
so far been parametrized via [2]

Φ(x) =
Hx

2
r2
x +

Hy

2
r2
y +

Hz

2
r2
z , (16)

v = (Hxrx,Hyry,Hzrz) , (17)

where Hx,y,z are the directional Hubble-parameters, and
eq. (7) with s from (11) can be fulfilled via the choice of

Hx = Ẋ
2X

and similarly for y and z. Here X, Y , Z are the

length scales in three perpendicular directions and Ẋ, Ẏ ,
Ż their proper-time derivatives. Here we shall use a form
that is more straightforwardly generalized to anisotropies
of higher orders. The elliptic anisotropy is then parame-
trized as

Φ(x) =
H

2
r2 (1 + χ2 cos(2α)) +

Hz

2
r2
z , (18)

where H is the radial Hubble-parameter, while Hz is the
one describing longitudinal expansion. This form fulfills
eq. (7) with s from eq. (12), if

ǫ̇2 = −2Hχ2(1− ǫ22),
Ṙ

R
= H(1− ǫ2χ2),

Ż

Z
= Hz.

(19)
For arbitrary-order asymmetries, Φ can be introduced via
a general form

Φ(x) =
H

2
r2

(

1 +

∞
∑

n=2

χn cos(n(α − αn))

)

+
Ż

2Z
r2
z . (20)

With this choice of uµ and s from eq. (14), eq. (7) can be
satisfied if one requires χn = 0 and the time derivative of
ǫn to vanish. This yields a Hubble-like expansion without
the change in the asymmetries.

More generally, eq. (7) can also be fulfilled, if ǫn and
χn are so small that their bilinear and quadratic terms
can be neglected. In this case,

Ṙ

R
= H and ǫ̇n = −2

Ṙ

R
χn (21)

are required to fulfill eq. (7). The complete set of condi-
tions that are derived from eq. (7) for the αn = 0 case

Fig. 1. Example flow (left) and density (right) fields with ex-
ample values of ǫ2 = χ2 = 0.3 and ǫ3 = χ3 = 0.1 for the
asymmetry coefficients.

includes

Ṙ

R
= H

(

1 +
1

2

∞
∑

n=1

ǫnχn

(

1 +
n2

4

)

)

(22)

as well as for any k > 0

ǫ̇k = 2Hχk − 2

(

Ṙ

R
− H

)

ǫk

+H
∞
∑

n=1

ǫnχn+k

(

1 +
n(n + k)

4

)

+H
∞
∑

n=1
n�=k

ǫnχ|n−k|

(

1 +
n(n − k)

4

)

. (23)

If only a subset of ǫn and χn values are nonzero, then this
set of equations can be solved successively. Let us recall
that since the co-moving derivative of s vanishes in all
the above cases, the Buda-Lund profile described above
can be taken as a result of a hydrodynamic calculation,
and may form the basis of exact hydrodynamic solutions.
Note, however, that this will not be required in the present
study. For an illustration of the density and flow fields
defined above, see fig. 1.

3 Single-particle distributions

Observable quantities, like invariant momentum distribu-
tions or the correlation radii, are generally obtained by in-
tegrating and calculating the space-time moments of the
source function, eq. (1). If this cannot be accomplished
analytically then numeric methods have to be resorted to.

The invariant momentum distribution is obtained as

E
d3N

dp3
= N1(p) =

∫

d4x S(x, p). (24)

In this paper we shall concentrate on midrapidity, as is ap-
propriate for the description of the experiments at RHIC
and the LHC. Furthermore, when looking at azimuthally
integrated distributions we shall have to integrate over the
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Table 1. Default values of the model parameters (at the freeze-
out). Anisotropy parameters are not listed here because they
are varied in the different studies reported here.

Particle mass m 140 MeV

Freeze-out time τ0 7 fm/c

Central freeze-out temperature T0 170 MeV

Temperature-asymmetry parameter a2 0.3

Spatial slope parameter b −0.1

Transverse size of the source R 10 fm

Longitudinal size of the source Z 15 fm

Transverse expansion Ṙ 1

Longitudinal expansion Ż 0.94

10
0

101

102

103

104

 400  600  800  1000 1200 1400 1600 1800

e2=0

d
2
N

/(
2
r 

p
t 
d
p

t 
d
y)

| y
=

0

pt [MeV]

g2=0.0
g2=0.2
g2=0.5

Fig. 2. Azimuthally integrated single-particle pt spectra for
various values of the second-order anisotropy parameter ǫ2.

azimuthal angle of the emitted hadrons (which we denote
by φ here)

d2N

pt dpt dy
=

∫ 2π

0

dφ N1(p). (25)

The anisotropies of the transverse momentum distri-
bution are denoted by vn. These observables drew much
experimental as well as theoretical interest recently, and
are defined as n-th–order Fourier coefficients with respect
to the angle of the n-th–order event plane ψn

d3N
pt dpt dy dφ

d2N
2πpt dpt dy

= 1 + 2

∞
∑

n=1

vn cos(n(φ − ψn)). (26)

The anisotropy coefficients vn can be obtained from

vneinψn =

∫ 2π

0
dφ einφ N1(p)

∫ 2π

0
dφ N1(p)

. (27)

Usually, v2 is referred to as elliptic flow and v3 as trian-
gular flow.

In our calculations we chose the values of parameters
that are motivated by earlier fits to data [4,15]. They are
listed in table 1.

Generally, one expects that the azimuthal anisotropy
has no influence on the azimuthally integrated spectrum.
However, the space and flow anisotropies in the present
model modify the effective volume, particularly at high
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Fig. 3. The effect of various anisotropy parameters on the flow
coefficients at pt = 300 MeV/c.

pt where the anisotropy is more pronounced. This is il-
lustrated in fig. 2. Thus there is a slight flattening of the
single-particle pt spectra connected with the increase of
the anisotropy parameters ǫi and/or χi. Note that in the
figure we only show the dependence on ǫ2 but this is qual-
itatively similar to the dependences on other parameters.

It has been calculated in [3] how the elliptic flow coeffi-
cient v2 depends on the second-order anisotropy in shape
and expansion. Here, in fig. 3 we again plot this depen-
dence together with the dependence of v3 on ǫ3 and χ3.
Similarly to the second order, also here we have an am-
biguity: same values of vi can be obtained from various
combinations of ǫi and χi. Note that ǫ2 and χ2 do not
influence v3, and vice versa.

4 Correlation radii

The correlation radii are very important quantities for the
exploration of the space-time structure of the source. Gen-
erally, the two-particle momentum correlation function is
defined as

C2(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
. (28)

The denominator which provides the two-particle distri-
bution with no correlations is experimentally obtained by
means of event mixing. Usually one introduces the mo-
mentum difference q and the average pair momentum K

q = p1 − p2 and K =
p1 + p2

2
. (29)

Then the correlation function can be determined (within
reasonable approximation) from the source function

C2(q,K) = 1 +
|
∫

d4x eiqxS(x,K)|2
(
∫

d4xS(x,K))2
. (30)

If the shape of the correlation function is reasonably
close to a Gaussian, then the correlation function can be
parametrized by a Gaussian

C(q,K) = 1 + λ exp

⎛

⎝−
∑

i,j

R2
ij qi qj

⎞

⎠ (31)
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run over the spatial directions, and where the parameter λ
stands for the (in general, mean-momentum–dependent)
intercept parameter, that measures the strength of two-
particle Bose-Einstein correlation functions. When parti-
cle identification errors are negligibly small, this param-
eter λ can be interpreted in the core-halo picture as the
(momentum-dependent) squared fraction of particles com-
ing from the hydrodynamically evolving core [9].

The temporal component of q is suppressed via the
on-shell constraint

q · K = 0 → q0 =
q · K
K0

= q · β. (32)

For nearly Gaussian, for example hydrodynamically evolv-
ing sources, the correlation radii R2

ij can be expressed
through spatio-temporal (co)variances of the hydrody-
namically evolving, core part of the source function. The
temporal admixture in these radii is due to the on-shell
constraint (32). Note, however, that long-lived resonances
typically dominate the variances of the source distribu-
tion even if their decay products are present in a small
relative fraction. Due to this reason, the evaluation of the
correlation radii has to be restricted to the core or the
hydrodynamically evolving part of the source, [10].

When studying the azimuthal dependence of the cor-
relation radii, meticulous bookkeeping of the angular vari-
ables is requested. Recall that we denote that

φ is the azimuthal angle of the emitted particles;
ψn is the n-th–order event plane determined for the dis-

tribution of produced hadrons according to eq. (27);
α is the spatial-coordinate azimuthal angle;

αn is the phase of the spatial azimuthal dependence of the
source function.

It is also useful to notice that φ and ψn are measurable
while α and αn only appear in the calculations and cannot
be directly accessed by measurement.

In general, the correlation radii measure the lengths
of homogeneity [16]. These are sizes of the homogene-
ity regions from which particles with given momentum
are produced. For hydrodynamically expanding fireballs,
these homogeneity regions are typically smaller than the
whole volume of the fireball, if the fireball has gradients
in the flow velocity distribution that lead to variations in
the local flow velocities that are larger than what can be
overcompensated by the locally thermalized velocity dis-
tribution of the emitted particles.

The spatio-temporal distribution of the particle emit-
ting source is frequenty analyzed in the Bertsch-Pratt
side-out-longitudinal decomposition, as measured in the
Longitudinal Center of Mass System of the particle pair
(LCMS). LCMS is the frame where the longitudinal com-
ponent of a given particle pair has vanishing mean momen-
tum along the beam direction, the transverse momentum
components being the same as in the laboratory. In this
frame, the direction of the mean momentum of a given
particle pair defines the outwards or out direction, which
is perpendicular to the beam direction, which in turn is
referred to as the longitudinal or long direction. The side-
wards or side direction is perpendicular to both the out

and the long direction, so that the (side,out,long) direc-
tions form a right-handed coordinate system.

When analyzing the correlations of particles emitted
under different azimuthal angles, one looks at the fireball
from those angles. This change of the viewpoint introduces
the explicit azimuthal angle dependence of the correlation
radii.

The homogeneity regions change for particles emitted
under different azimuthal angles. This introduces the im-

plicit azimuthal angle dependence of the correlation radii.
It is instructional to write out the outward and side-

ward coordinates as

rout = r cos(α − φ), (33a)

rside = r sin(α − φ), (33b)

where φ is defined by the direction of the particle. With
this notation we obtain

R2
out(K) =

〈

(rout − βtt)
2
〉

c
− 〈rout − βtt〉2 , (34a)

R2
side(K) =

〈

r2
side

〉

c
− 〈rside〉2c , (34b)

where βt is the transverse component of β introduced in
eq. (32), and we have introduced averaging over the source
function of the hydrodynamically evolving core

〈f(x)〉c =

∫

d4x f(x)Sc(x,K)
∫

d4x Sc(x,K)
, (35)

similarly to, e.g., the notation of eqs. (106)–(110) of
ref. [10]. Using this method, we have evaluated the cor-
relation radii numerically as functions of φ for various az-
imuthal anisotropy parameters.

In the real experiment the shape and expansion pat-
tern of the fireball fluctuate from event to event. Even if
we fix the average transverse size and the anisotropy pa-
rameters ǫn and χn there still remain the phases αn which
are unlikely to be correlated for the second and the third
order. In an experimental analysis one usually rotates all
events so that they are aligned according to ψ2 or ψ3. By
rotating and summing up a large number of events only
oscillations of the same order (and its multiplicatives) re-
main as that of the angle of the reaction plane.

In order to see both the second-order and the third-
order oscillations in data one would have to refrain from
averaging over a large number of events which all have
different Δψ23 = ψ2 − ψ3. Perhaps a way to select events
for such an analysis can be provided by the recently pro-
posed Event Shape Sorting [17]. Here we want to inves-
tigate what is actually the effect of averaging on the φ-
dependence of the correlation radii. To this end, we fix
the anisotropy parameters and perform several calcula-
tions where we always set the difference of α2 and α3 at
a different value. Note that in the calculation we rotate
the source by choosing α2 and α3, while the experimental
data analysis is done with the event planes ψ2 and ψ3. In
a soft-particles emitting source without resonance decays
—like here— those two kinds of directions actually must
agree.
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(top) and α3 = 0 (bottom). Different curves correspond to
different values of Δα23 = α2 − α3.

The results for R2
side vs. φ with different Δα23 =

α2−α3 values are plotted in fig. 4. We clearly see that the
gross shape of the dependence is set by the choice of the
alignment angle. This behavior is best understood quali-
tatively if we write out the velocity field for both cases.
If we rotate the source to the second-order event plane,
i.e. α2 = 0, then the transverse velocity field derived from
eq. (4) with Φ(x) given by eq. (20) becomes

vx = r
Ṙ

R

(

cos α + χ2 cos α

+
χ3

4
(5 cos(2α − Δα23) − cos(4α − Δα23))

)

, (36a)

vy = r
Ṙ

R

(

sin α − χ2 sin α

−χ3

4
(5 sin(2α − Δα23) + sin(4α − Δα23))

)

. (36b)

The scaling variable for non-vanishing ǫ2 and ǫ3 would be

s =
r2

R2
(1 + ǫ2 cos(2α) + ǫ3 cos(3α − Δα23)) +

r2
z

Z2
. (37)

If, on the other hand, we choose α3 = 0, then the velocity
field becomes

vx = r
Ṙ

R

(

cos(α) + χ2 cos(α + Δα23)

+
χ3

4
(5 cos(2α) − cos(4α))

)

, (38a)

vy = r
Ṙ

R

(

sin(α) − χ2 sin(α + Δα23)

−χ3

4
(5 sin(2α) + sin(4α))

)

, (38b)
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Fig. 5. The φ-dependence of R2
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Solid: χ3 = 0.3 and the curve is averaged over Δα23; dashed:
χ3 = 0 and no averaging.

and the scaling variable

s =
r2

R2
(1 + ǫ2 cos(2α + Δα23) + ǫ3 cos(3α)) +

r2
z

Z2
. (39)

Due to the mechanism of how the flow velocity is set by
eq. (4) the angle difference Δα23 is combined in the two
cases with different orders of harmonic oscillations and
there is no simple shift from one alignment to the other.

When summing up over a large number of events the
various curves are all being averaged into one. We want
to see the influence of such averaging. To this end, we set
α2 = 0 and calculate R2

side(φ) in two different ways. First,

calculation via eq. (34b) is performed with χ2 = 0.2 and
χ3 = 0.3 at multiple values of Δα23 and then the results
are averaged over Δα23. Second, χ3 is set to 0 and the
calculation with only the second-order parameter χ2 = 0.2
is performed. Both results are plotted in fig. 5. We observe
that the averaging basically preserves the shape of the
dependence but it increases its absolute size by a relatively
small amount. Qualitatively, similar results are observed
for averaging over any of ǫ2, ǫ3, χ2, χ3.

This is best understood qualitatively by means of a
very simplified model in which, however, we keep both
the second and- the third-order variation. Let us write
the emission function as

Stoy(x) = e−s =

exp

[

− r2

R2
(1 + ǫ2 cos 2α + ǫ3 cos 3(α − Δα23))

]

. (40)

Then if we average over Δα23, we get

Stoy,av(x) = 〈Stoy(x)〉∆α23

= exp

[

− r2

R2
(1 + ǫ2 cos 2α)

]

I0

(

ǫ3
r2

R2

)

(41)

with I0 denoting the zeroth-order modified Bessel func-
tion. If we then integrate over α, we get

∫

dαStoy,av(x) = 2πe−
r
2

R2 I0

(

ǫ2
r2

R2

)

I0

(

ǫ3
r2

R2

)

. (42)
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Fig. 6. The φ-dependence of R2

out and R2

side after setting ψ2 =
α2 = 0 and averaging over Δα23. Values of parameters are
indicated in the panels. Points are results of calculations, lines
are fits with eq. (44).

However, if we had set ǫ3 = 0 and then integrated over α,
we would have obtained

∫

dαStoy(x; ǫ3 = 0) = 2π exp

[

− r2

R2

]

I0

(

ǫ2
r2

R2

)

. (43)

The two results differ by a factor of I0(ǫ3r
2/R2), even in

this very simple case, and in the more complicated case of
fig. 5. It is also clear from this that averaging over random
variations between the difference of the third-order and
second-order event planes, or assuming that there are no
third-order variations in the density profile leads to very
similar results for ǫ3 ≪ 1, with corrections of the order of
ǫ23. It also turns out that the same is true for third-order os-
cillations: event plane averaged second-order anisotropies
have an effect of the size I0(ǫ2r

2/R2).
A numerical investigation of the effects of third-order

variations of the velocity profile is indicated in fig. 5, that
suggests that the relative error that comes from the aver-
aging over the random orientation of the third-order event
plane modifies the amplitude of HBT oscillations slightly,
and the modification increases with increasing χ3, the co-
efficient of third-order variations of the velocity profile.

In order to describe the azimuthal oscillations of Bose-
Einstein or HBT radii, a blast-wave model was also de-
veloped in ref. [18]. It was applied to study the second-
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Fig. 7. The φ-dependence of R2

out and R2

side after setting ψ3 =
α3 = 0 and averaging over Δα23. Values of parameters are
indicated in the panels. Points are results of calculations, lines
are fits with eq. (45).

order oscillations of pion and kaon HBT radii in ref. [19].
However, in these models, third-order anisotropies as well
as the possible difference between the second-order and
third-order event planes have not been considered. Based
on fig. 5, such an approximation may be valid if ξ3, the
amplitude of third-order oscillations in the local valocity
distribution does not exceed the relative error of the ex-
perimental determination of the HBT radii, corresponding
to 5–10% in the case of a recently published measurement
of pion and kaon correlations [19].

This shows that if one needs to speed up the calcula-
tion then the easier way by setting some anisotropies to
0 is viable. We have checked that this gives good results
for the α2 = 0 leading Fourier order of the φ-dependence
and some deviations may appear (though not always) in
the sub-leading terms. There are differences between the
results of the two schemes for the case α3 = 0. The re-
sults presented here are obtained by conscientious averag-
ing over Δα23.

In fig. 6 we present the φ-dependence of R2
out and R2

side

with ψ2 = α2 = 0, for various values of ǫ2 and χ2 (while
ǫ3 = 0, χ3 = 0). Similarly, in fig. 7 the third-order oscil-
lation is presented with ψ3 = α3 = 0 and second-order
parameters set to ǫ2 = 0, and χ2 = 0. The common ob-
servation of these dependencies clearly shows that there
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Fig. 8. Average radius and scaled amplitudes with ψ2 = α2 =
0 for R2

side (left column) and R2

out (right column) average (top
row), second (middle), and fourth (bottom) scaled amplitude,
as functions of ǫ2 and χ2.

are important next-to-leading order contributions in the
Fourier expansions of R2

out(φ) and R2
side(φ).

To analyze this, the calculated values (data points)
were fitted with Fourier series. For ψ2 = 0 this reads

R2
i (φ) = R2

i,2,0 + R2
i,2,2 cos(2φ)

+R2
i,2,4 cos(4φ) + R2

i,2,6 cos(6φ), (44)

where i stands for “out” or “side”. Higher-order terms
have been neglected. For φ3 = 0 we have an expansion
with terms of order 3 and its multiples

R2
i (φ) = R2

i,3,0 + R2
i,3,3 cos(3φ)

+R2
i,3,6 cos(6φ) + R2

i,3,9 cos(9φ). (45)

Note that in general R2
i,3,6 �= R2

i,2,6. Therefore we have to
introduce the cumbersome indexing of the Fourier terms
which indicates the order of the event plane set to 0 and
the order of the term.

The dependence of scaled amplitudes R2
i,2,2/R2

i,2,0 has
been studied in ref. [3]. Here we show it for complete-
ness in fig. 8 together with the average radii and the
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Fig. 9. Average radius and scaled amplitudes with ψ3 = α3 =
0 for R2

side (left column) and R2

out (right column) average (top
row), third (middle), and sixth (bottom) scaled amplitude, as
functions of ǫ2 and χ2.

scaled amplitudes for the fourth order, R2
i,2,4/R2

i,2,0. Note
the symmetry of the results with respect to the change
(ǫ2, χ2) → (−ǫ2,−χ2). In fact, such a change is equiva-
lent to a mere shift of the phase α2 by π/2. An inter-
esting saddle-like dependence is discovered for the fourth-
order scaled amplitudes. While R2

i,2,4/R2
i,2,0 seems to van-

ish very roughly along the diagonals χ2 = ±ǫ2, an impor-
tant fourth-order contribution shows up when one of the
parameters is close to 0.

For the α3 = ψ3 = 0 case we plot the average and the
third- and sixth-order scaled amplitudes as functions of χ3

and ǫ3 (ǫ2 = 0, χ2 = 0) in fig. 9. Although we have kept
the same R in all calculations, the change in R2

i,3,0 can
be as large as 30% for the investigated interval of ǫ3 and
χ3. Smallest values are obtained roughly along ǫ3 = −χ3

which actually means that spatial and flow anisotropies
have phases shifted by the maximum value of π/6. The
largest radii are obtained for large values of ǫ3 = χ3.

The third-order scaled amplitude of R2
side(φ) shows an

interesting dependence on χ3 and ǫ3. It seems to mainly
depend on spatial anisotropy ǫ3, so in first approxima-
tion R2

side,3,3/R2
side,3,0 could be used for the determina-
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Fig. 10. Flow coefficients and scaled amplitudes from
figs. 3, 8–9 superimposed, as functions of ǫ2, χ2, ǫ3, and ξ3.
The upper panels show the second-order scaled HBT ampli-
tudes as well as the elliptic flow, while the lower panels show
the third-order scaled HBT amplitudes as well as the trian-
gular flow. The lines that go through the point (0, 0) in the
ǫ, χ plane correspond to the 0-value of the given observable.
The values of the consecutive contours can be read out from
figs. 8–9.

tion of ǫ3. However, we also observe a wavy structure
if it is considered as a function of χ3, as indicated by
the second panel of fig. 7, so the statement holds only
approximately. Nevertheless, we observe that the corre-
lation between χ3 and ǫ3 which leads to the same value
of R2

out,3,3/R2
out,3,0 is almost perpendicular to that which

yields the same v3 (cf. fig. 3). Thus from the combina-
tion of the two measurements one should be able to de-
termine both third-order anisotropy parameters of this
model.

The contribution from the sixth-order Fourier coeffi-
cient has its gradient roughly along the line χ3 = −ǫ3.
This is the same direction as the one along which we ob-
serve the smallest average values of the correlation radii.

The most important observation is however that with
the contours of fig. 3 and figs. 8, 9, indeed the spatial and
flow-field anisotropies can be disentangled. For illustra-
tion, in fig. 10 we show how the particular values of the
oscillation of the correlation radii and of the flows let one
determine the contribution from ǫ2, χ2, ǫ3, and ξ3.

5 Conclusions

We have extended the Buda-Lund hydro model with
higher-order anisotropies in transverse shape and expan-
sion velocity profile. In a special case, this model can

be identified with a solution of a certain hydrodynamic
model.

With the extended model we pushed further the study
that has been started in [3]. There, the influences of
second-order anisotropies in space and expansion on the
observable v2 and the elliptic modulation of the correlation
radii were investigated. It was deduced how to disentan-
gle them with the help of the following observations: to
consider both the elliptic flow and the second-order HBT
oscillations. In a similar manner, here we showed that the
third-order anisotropies in space and expansion velocity
can be disentangled if v3 and R3

i,3,3/R2
i,3,0 are studied ex-

perimentally.
Within the Buda-Lund model we investigated how the

mean value of the correlation radii and the absolute nor-
malization of single-particle pt spectra increase if we av-
erage over the azimuthal angle.

The conclusions drawn here were deduced from the re-
sults obtained with the extended Buda-Lund model. There
are other analogical parameterizations of the freeze-out
state of the fireball on the market, however. Examples are
the Blast-wave model [18, 20] and/or the Cracow single
freeze-out model [21]. In the next future we therefore plan
to implement higher-order anisotropies also in the Blast-
wave model and perform a similar study. This will show
which features of the results obtained here are robust and
which are rather an artifact of the specific model.

Future analytic investigations of solutions with small
density and velocity perturbations along the lines of
ref. [22] on the top of those exact hydrodynamical solu-
tions that form the basis of the Buda-Lund hydro model
(for example refs. [2, 11]) are also among the future re-
search directions that we consider important to pursue.
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