Description of multipole asymmetries with the Buda Lund hydrodynamical model

Máté Csanád, Sándor Lökös, Boris Tomášik and Tamás Csörgő

WPCF 2015, Warsaw

Introduction

- QGP behaves like perfect fluid \rightarrow hydro description
- Finite number of nucleons \rightarrow generalized geometry is nescessary
- Generalize the space-time and the velocity field distribution
- Higher order flows can be investigated
- HBT radii have $\cos (n \phi)$ dependences in the respective reaction plane
- These can be studied experimentally:

Nucl.Phys. A904-905 (2013) 439c-442c
Phys.Rev.Lett. 112 (2014) 22, 222301

The Buda-Lund model

Phys.Rev. C54 (1996) 1390 and Nucl.Phys. A742 (2004) 80-94

- Hydro-model: $S(x, p)=\frac{g}{(2 \pi)^{3}} \frac{p^{\nu} d^{4} \Sigma_{\nu}(x)}{B(x, p)+s_{q}}$ where
$B(x, p)=\exp \left[\frac{p^{\nu} u_{\nu}(x)-\mu(x)}{T(x)}\right]$ is the Boltzmann phase-space distribution and the $p^{\nu} d^{4} \Sigma_{\nu}(x)=p^{\nu} u_{\nu} \delta\left(\tau-\tau_{0}\right) d^{4} x$
- Spatial elliptical asymmetry is ensured by the scaling variable

$$
s=\frac{r_{x}^{2}}{2 X^{2}}+\frac{r_{y}^{2}}{2 Y^{2}}+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- The asymmetry in the velocity field is also elliptical

$$
u_{\mu}=\left(\gamma, r_{x} \frac{\dot{X}}{X}, r_{y} \frac{\dot{Y}}{Y}, r_{z} \frac{\dot{Z}}{Z}\right)
$$

Generalization of the model I.

- The spatial asymmetry is described by the scaling variable
- General n-pole spatial asymmetry (elliptical case: $n=2$):

$$
s=\frac{r^{2}}{2 R^{2}}\left(1+\sum_{n} \epsilon_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- Ψ_{n} is the angle of the n-th order reaction plane

Generalization of the model II.

- Derive the velocity field from a potential: $u_{\mu}=\gamma\left(1, \partial_{x} \Phi, \partial_{y} \Phi, \partial_{z} \Phi\right)$
- General n-pole asymmetrical potential (elliptical case: $n=2$):

$$
\Phi=H r^{2}\left(1+\sum_{n} \chi_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)+H_{z} r_{z}^{2}
$$

- $u^{\mu} \partial_{\mu} s=0$ is satisfied:
- in $\mathcal{O}\left(\epsilon_{n}\right)$ and $\mathcal{O}\left(\chi_{n}\right)$ if $\dot{\epsilon}_{n}=-2 H \chi_{n}$
- generally there are complicated equations for $\epsilon_{n}(t), \chi_{n}(t)$ functions
- From Euler-equation:
- dynamics of the $\chi_{n} s$ can be calculated
- the initial perturbations are constans during the evolution in first order
- First order calculation can be valid because of the small coefficients

Observables

- Invariant transverse momentum distribution, flows, azimuthally sensitive HBT radii
- All asymmetries are investigated in their respective reaction plane
- Rotate the system to the second / third order plane and average on the angle of the third / second order plane
- The proper parameters can be set to zero

Invariant momentum distribution

Significant change could be at high p_{t}, the log slope is not affected strongly

Flows

Elliptic and triangular flows are affected by their own asymmetry parameters

Mixing of parameters

- The parameters affect the flows together
- The generalization of velocity field is nescessary

HBT radii

- Calculate in the out - side - long system

$$
R_{\text {out }}^{2}=\left\langle r_{\text {out }}^{2}\right\rangle-\left\langle r_{\text {out }}\right\rangle^{2} \text { and } R_{\text {side }}^{2}=\left\langle r_{\text {side }}^{2}\right\rangle-\left\langle r_{\text {side }}\right\rangle^{2}
$$

where $r_{\text {out }}=r \cos (\phi-\alpha)-\beta_{t} t$ and $r_{\text {side }}=r \sin (\phi-\alpha)$
\rightarrow C. J. Plumberg, C. Shen, U. W. Heinz Phys.Rev. C88 (2013) 044914

- There can be higher order parts
\rightarrow B. Tomášik and U. A. Wiedemann, in QGP3, pp. 715-777.
- We use the following parameterization in
- elliptical case:

$$
R_{\mathrm{out}}^{2}=R_{\mathrm{out}, 0}^{2}+R_{\mathrm{out}, 2}^{2} \cos (2 \alpha)++R_{\mathrm{out}, 4}^{2} \cos (4 \alpha)+R_{\mathrm{out}, 6}^{2} \cos (6 \alpha)
$$

- triangular case:

$$
R_{\mathrm{out}}^{2}=R_{\mathrm{out}, 0}^{2}+R_{\mathrm{out}, 3}^{2} \cos (3 \alpha)+R_{\mathrm{out}, 6}^{2} \cos (6 \alpha)+R_{\mathrm{out}, 9}^{2} \cos (9 \alpha)
$$

- Similar to the $R_{\text {side }}$

Results of the parametrization - Second order case

This case already have investigated: Eur.Phys.J.A37:111-119,2008 Mainly $\cos (2 \phi)$ behavior but higher order oscillations are also present

Results of the parametrization - Third order case

Mainly $\cos (3 \phi)$ behavior but higher order oscillations are also present

Mixing of the parameters

The dependence of the amplitudes of the $R_{\text {out }}^{2}$ and $R_{\text {side }}^{2}$ in the second order case

Mixing of the parameters

The dependence of the amplitudes of the $R_{\text {out }}^{2}$ and $R_{\text {side }}^{2}$ in the third order case

Conclusions

- Generalization of u^{μ} and s with $u^{\mu} \partial_{\mu} s=0$ kept valid
- Higher order flows and azimuthally sensitive HBT radii can be derived
- Absolute value of the azimuthal HBT radii depend on asymmetries
- Third order radii depend on spatial asymmetries more strongly
- Higher order oscillation can be observed in HBT radii
- The spatial and velocity field anisotropies both influence the v_{n} coefficient and the HBT radii
- The asymmetry parameters can be disentangle from the flows and the amplitudes

Thank you for your attention!

And let me invite you to the 15th Zimanyi School in Budapest http://zimanyischool.kfki.hu/15/

ZIMÁNYI SCHOOL'15

Arnold Gross: Lexicon
15. Zimányi

WINTER SCHOOL ON

 HEAVY ION PHYSICSDec. 7. - Dec. 11., Budapest, Hungary

József Zimányi (1931-2006)

Backup slides - About the spectra

Plot the N_{1} with non zero coefficient divide by N_{1} with zero coefficient

Backup slides - Higher order amplitudes

Second order:

Backup slides - Higher order amplitudes

Third order:

$$
R_{\text {out, } 9}^{2} / R^{2}{ }_{\text {out }, 0}
$$

$$
R_{\text {side }, 9}^{2} / R_{\text {side }, 0}^{2}
$$

Backup slides - Averaging

Averaging vs. set-to-zero

Backup slides - Square of residuals

An example: square of residuals of $R_{\text {out }}^{2}$ with different parametrizations

Error of $\mathrm{R}_{\text {out, } 2}{ }^{2}$ fit

Earlier results

Fits with elliptical Buda Lund model: Eur.Phys.J. A47 (2011) 58-66

Value of the parameters

Meaning	Sign	Value
Mass of the particle	m	140 MeV
Freeze-out time	τ_{0}	$7 \mathrm{fm} / \mathrm{c}$
Freeze-out temperature	T_{0}	170 MeV
Temperature-asymmetry parameter	a^{2}	0.3
Spatial slope parameter	b	-0.1
Transverse size of the source	R	10 fm
Longitudinal size of the source	Z	15 fm
Velocity-space transverse size	H	$10 \mathrm{fm} / \mathrm{c}$
Velocity-space longitudinal size	H_{z}	$16 \mathrm{fm} / \mathrm{c}$
Elliptical spatial asymmetry parameter	ϵ_{2}	0.0
Triangular spatial asymmetry parameter	ϵ_{3}	0.0
Elliptical velocity-field asymmetry parameter	χ_{2}	0.0
Triangular velocity-field asymmetry parameter	χ_{3}	0.0

Usually one anisotropy parameter is varied, and the others are kept zero

