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Introduction

QGP behaves like perfect �uid → hydro description
Finite number of nucleons → generalized geometry is nescessary
Generalize the space-time and the velocity �eld distribution
Higher order �ows can be investigated
HBT radii have cos(nφ) dependences in the respective reaction plane
These can be studied experimentally:

Nucl.Phys. A904-905 (2013) 439c-442c
Phys.Rev.Lett. 112 (2014) 22, 222301
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The Buda-Lund model

Phys.Rev. C54 (1996) 1390 and Nucl.Phys. A742 (2004) 80-94

Hydro-model: S(x , p) = g
(2π)3

pνd4Σν(x)
B(x ,p)+sq

where

B(x , p) = exp
[
pνuν(x)−µ(x)

T (x)

]
is the Boltzmann phase-space

distribution and the pνd4Σν(x) = pνuνδ(τ − τ0)d4x

Spatial elliptical asymmetry is ensured by the scaling variable

s =
r2x
2X 2

+
r2y

2Y 2
+

r2z
2Z 2

The asymmetry in the velocity �eld is also elliptical

uµ =

(
γ, rx

Ẋ

X
, ry

Ẏ

Y
, rz

Ż

Z

)
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Generalization of the model I.

The spatial asymmetry is described by the scaling variable

General n-pole spatial asymmetry (elliptical case: n = 2):

s =
r2

2R2

(
1 +

∑
n

εn cos(n(φ−Ψn))

)
+

r2z
2Z 2

Ψn is the angle of the n-th order reaction plane
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Generalization of the model II.

Derive the velocity �eld from a potential: uµ = γ(1, ∂xΦ, ∂yΦ, ∂zΦ)

General n-pole asymmetrical potential (elliptical case: n = 2):

Φ = Hr2

(
1 +

∑
n

χn cos(n(φ−Ψn))

)
+ Hz r

2
z

uµ∂µs = 0 is satis�ed:

in O(εn) and O(χn) if ε̇n = −2Hχn
generally there are complicated equations for εn(t), χn(t) functions

From Euler-equation:

dynamics of the χns can be calculated

the initial perturbations are constans during the evolution in �rst order

First order calculation can be valid because of the small coe�cients
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Observables

Invariant transverse momentum distribution, �ows, azimuthally
sensitive HBT radii

All asymmetries are investigated in their respective reaction plane

Rotate the system to the second / third order plane and average on
the angle of the third / second order plane

The proper parameters can be set to zero
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Invariant momentum distribution

Signi�cant change could be at high pt , the log slope is not a�ected strongly
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Flows

Elliptic and triangular �ows are a�ected by their own asymmetry parameters
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Mixing of parameters

The parameters a�ect the �ows together

The generalization of velocity �eld is nescessary
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HBT radii

Calculate in the out − side − long system

R2
out = 〈r2out〉 − 〈rout〉2 and R2

side
= 〈r2

side
〉 − 〈rside〉2

where rout = r cos(φ− α)− βtt and rside = r sin(φ− α)
→ C. J. Plumberg, C. Shen, U. W. Heinz Phys.Rev. C88 (2013) 044914

There can be higher order parts
→ B. Tomá²ik and U. A. Wiedemann, in QGP3, pp. 715�777.

We use the following parameterization in

elliptical case:

R
2

out
= R

2

out,0 + R
2

out,2 cos(2α) + +R
2

out,4 cos(4α) + R
2

out,6 cos(6α)
triangular case:

R
2

out
= R

2

out,0 + R
2

out,3 cos(3α) + R
2

out,6 cos(6α) + R
2

out,9 cos(9α)

Similar to the Rside
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Results of the parametrization � Second order case

This case already have investigated: Eur.Phys.J.A37:111-119,2008
Mainly cos(2φ) behavior but higher order oscillations are also present
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Results of the parametrization � Third order case

Mainly cos(3φ) behavior but higher order oscillations are also present
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Mixing of the parameters

The dependence of the amplitudes of the R2
out and R2

side
in the second order

case
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Mixing of the parameters

The dependence of the amplitudes of the R2
out and R2

side
in the third order

case
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Conclusions

Generalization of uµ and s with uµ∂µs = 0 kept valid

Higher order �ows and azimuthally sensitive HBT radii can be derived

Absolute value of the azimuthal HBT radii depend on asymmetries

Third order radii depend on spatial asymmetries more strongly

Higher order oscillation can be observed in HBT radii

The spatial and velocity �eld anisotropies both in�uence the vn
coe�cient and the HBT radii

The asymmetry parameters can be disentangle from the �ows and the
amplitudes
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Thank you for your attention!
And let me invite you to the 15th Zimanyi School in Budapest

http://zimanyischool.kfki.hu/15/
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Backup slides � About the spectra

Plot the N1 with non zero coe�cient divide by N1 with zero coe�cient
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Backup slides � Higher order amplitudes

Second order:
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Backup slides � Higher order amplitudes

Third order:

19 / 16



Backup slides � Averaging

Averaging vs. set-to-zero
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Backup slides � Square of residuals

An example: square of residuals of R2
out with di�erent parametrizations
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Earlier results

Fits with elliptical Buda Lund model: Eur.Phys.J. A47 (2011) 58-66
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Value of the parameters

Meaning Sign Value

Mass of the particle m 140 MeV
Freeze-out time τ0 7 fm/c

Freeze-out temperature T0 170 MeV
Temperature-asymmetry parameter a2 0.3

Spatial slope parameter b -0.1
Transverse size of the source R 10 fm
Longitudinal size of the source Z 15 fm
Velocity-space transverse size H 10 fm/c
Velocity-space longitudinal size Hz 16 fm/c

Elliptical spatial asymmetry parameter ε2 0.0
Triangular spatial asymmetry parameter ε3 0.0

Elliptical velocity-�eld asymmetry parameter χ2 0.0
Triangular velocity-�eld asymmetry parameter χ3 0.0

Usually one anisotropy parameter is varied, and the others are kept zero
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