Description of multipole asymmetries with the Buda Lund hydrodynamical model

Máté Csanád, Sándor Lökös, Boris Tomášik and Tamás Csörgő

WPCF 2015, Warsaw

비교 지원에 지원에 지원에 지원이 있다.

1/16

Introduction

- QGP behaves like perfect fluid \rightarrow hydro description
- ullet Finite number of nucleons ightarrow generalized geometry is nescessary
- Generalize the space-time and the velocity field distribution
- Higher order flows can be investigated
- HBT radii have $cos(n\phi)$ dependences in the respective reaction plane
- These can be studied experimentally: Nucl.Phys. A904-905 (2013) 439c-442c

Phys.Rev.Lett. 112 (2014) 22, 222301

The Buda-Lund model

Phys.Rev. C54 (1996) 1390 and Nucl.Phys. A742 (2004) 80-94

• Hydro-model:
$$S(x, p) = \frac{g}{(2\pi)^3} \frac{p^{\nu} d^4 \Sigma_{\nu}(x)}{B(x, p) + s_q}$$
 where
 $B(x, p) = \exp\left[\frac{p^{\nu} u_{\nu}(x) - \mu(x)}{T(x)}\right]$ is the Boltzmann phase-space
distribution and the $p^{\nu} d^4 \Sigma_{\nu}(x) = p^{\nu} u_{\nu} \delta(\tau - \tau_0) d^4 x$

• Spatial elliptical asymmetry is ensured by the scaling variable

$$s = rac{r_x^2}{2X^2} + rac{r_y^2}{2Y^2} + rac{r_z^2}{2Z^2}$$

• The asymmetry in the velocity field is also elliptical

$$u_{\mu} = \left(\gamma, r_{x}\frac{\dot{X}}{X}, r_{y}\frac{\dot{Y}}{Y}, r_{z}\frac{\dot{Z}}{Z}\right)$$

Generalization of the model I.

- The spatial asymmetry is described by the scaling variable
- General *n*-pole spatial asymmetry (elliptical case: n = 2):

$$s = \frac{r^2}{2R^2} \left(1 + \sum_n \epsilon_n \cos(n(\phi - \Psi_n)) \right) + \frac{r_z^2}{2Z^2}$$

• Ψ_n is the angle of the *n*-th order reaction plane

Generalization of the model II.

- Derive the velocity field from a potential: $u_{\mu} = \gamma(1, \partial_x \Phi, \partial_y \Phi, \partial_z \Phi)$
- General *n*-pole asymmetrical potential (elliptical case: n = 2):

$$\Phi = Hr^2 \left(1 + \sum_n \chi_n \cos(n(\phi - \Psi_n)) \right) + H_z r_z^2$$

- $u^{\mu}\partial_{\mu}s = 0$ is satisfied:
 - in $\mathcal{O}(\epsilon_n)$ and $\mathcal{O}(\chi_n)$ if $\dot{\epsilon}_n = -2H\chi_n$
 - generally there are complicated equations for $\epsilon_n(t), \chi_n(t)$ functions
- From Euler-equation:
 - dynamics of the χ_n s can be calculated
 - the initial perturbations are constans during the evolution in first order
- First order calculation can be valid because of the small coefficients

Observables

- Invariant transverse momentum distribution, flows, azimuthally sensitive HBT radii
- All asymmetries are investigated in their respective reaction plane
- Rotate the system to the second / third order plane and average on the angle of the third / second order plane
- The proper parameters can be set to zero

Significant change could be at high p_t , the log slope is not affected strongly

Flows

Elliptic and triangular flows are affected by their own asymmetry parameters

Mixing of parameters

- The parameters affect the flows together
- The generalization of velocity field is nescessary

HBT radii

• Calculate in the *out - side - long* system

$$R_{
m out}^2 = \langle r_{
m out}^2
angle - \langle r_{
m out}
angle^2$$
 and $R_{
m side}^2 = \langle r_{
m side}^2
angle - \langle r_{
m side}
angle^2$

where $r_{out} = r \cos(\phi - \alpha) - \beta_t t$ and $r_{side} = r \sin(\phi - \alpha)$

- \rightarrow C. J. Plumberg, C. Shen, U. W. Heinz Phys.Rev. C88 (2013) 044914
- There can be higher order parts

 \rightarrow B. Tomášik and U. A. Wiedemann, in QGP3, pp. 715–777.

- We use the following parameterization in
 - elliptical case:

 $R_{out}^{2} = R_{out,0}^{2} + R_{out,2}^{2}\cos(2\alpha) + R_{out,4}^{2}\cos(4\alpha) + R_{out,6}^{2}\cos(6\alpha)$

triangular case:

 $R_{\mathsf{out}}^2 = R_{\mathsf{out},0}^2 + R_{\mathsf{out},3}^2 \cos(3\alpha) + R_{\mathsf{out},6}^2 \cos(6\alpha) + R_{\mathsf{out},9}^2 \cos(9\alpha)$

Similar to the R_{side}

Results of the parametrization - Second order case

This case already have investigated: Eur.Phys.J.A37:111-119,2008 Mainly $\cos(2\phi)$ behavior but higher order oscillations are also present

Results of the parametrization - Third order case

Mainly $\cos(3\phi)$ behavior but higher order oscillations are also present

< □ > < @ > < 분 > < 분 > 분 = 의익 (3 12 / 16

Mixing of the parameters

The dependence of the amplitudes of the R_{out}^2 and R_{side}^2 in the second order case

<ロ > < 四 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 つ へ () 13 / 16

Mixing of the parameters

The dependence of the amplitudes of the R_{out}^2 and R_{side}^2 in the third order case

Conclusions

- Generalization of u^{μ} and s with $u^{\mu}\partial_{\mu}s = 0$ kept valid
- Higher order flows and azimuthally sensitive HBT radii can be derived
- Absolute value of the azimuthal HBT radii depend on asymmetries
- Third order radii depend on spatial asymmetries more strongly
- Higher order oscillation can be observed in HBT radii
- The spatial and velocity field anisotropies both influence the v_n coefficient and the HBT radii
- The asymmetry parameters can be disentangle from the flows and the amplitudes

Thank you for your attention!

And let me invite you to the 15th Zimanyi School in Budapest http://zimanyischool.kfki.hu/15/

ZIMÁNYI SCHOOL'15

Arnold Gross: Lexicon

15. Zimányi

WINTER SCHOOL ON HEAVY ION PHYSICS

Dec. 7. - Dec. 11., Budapest, Hungary

József Zimányi (1931 - 2006)

Plot the N_1 with non zero coefficient divide by N_1 with zero coefficient

Backup slides – Higher order amplitudes

Second order:

Backup slides – Higher order amplitudes

Third order:

19/16

Averaging vs. set-to-zero

An example: square of residuals of R_{out}^2 with different parametrizations

Earlier results

Fits with elliptical Buda Lund model: Eur.Phys.J. A47 (2011) 58-66

22/16

Value of the parameters

Meaning	Sign	Value
Mass of the particle	т	140 MeV
Freeze-out time	$ au_0$	7 fm/c
Freeze-out temperature	T_0	170 MeV
Temperature-asymmetry parameter	a ²	0.3
Spatial slope parameter	Ь	-0.1
Transverse size of the source	R	10 fm
Longitudinal size of the source	Z	15 fm
Velocity-space transverse size	H	10 fm/c
Velocity-space longitudinal size	Hz	16 fm/c
Elliptical spatial asymmetry parameter	ϵ_2	0.0
Triangular spatial asymmetry parameter	ϵ_3	0.0
Elliptical velocity-field asymmetry parameter	χ2	0.0
Triangular velocity-field asymmetry parameter	χ_3	0.0

Usually one anisotropy parameter is varied, and the others are kept zero $\sim_{\sim\sim\sim}$