Multipole asymmetries in relativistic hydrodynamics

Sándor Lökös ${ }^{1}$, Máté Csanád ${ }^{1,2}$, Boris Tomásik ${ }^{3,4}$, Tamás Csörgó55,6
${ }^{1}$ Eötvös Loránd University, Budapest, Hungary
${ }^{2}$ Stony Brook University, Stony Brook, NY, USA
${ }^{3}$ Univerzita Mateja Bela, Banská Bystrica, Slovakia ${ }^{4}$ FNSPE, Czech Technical University, Prague, Czech Republic ${ }^{5}$ Wigner RCP of the HAS, Budapest, Hungary
 ${ }^{6}$ Károly Róbert College, Gyöngyös, Hungary

Hydrodynamics

- Collective behavior observed at RHIC [1]
- Hydro solutions and parametrizations can be applied to measure the initial state of the sQGP
- Famous solutions: Landau, Hwa, Bjorken
- Many new $1+1$ D solutions, a few $1+3 \mathrm{D}$ solutions with spherical, elliptical symmetry
- Parametrizations with spherical, elliptical symmetry

Buda-Lund model

- Hydro parametrization in final state [2, 3]
- Describe an expanding ellipsoid with a source function

$$
\mathrm{S}(\mathrm{x}, \mathrm{p}) \mathrm{d} \mathrm{x}^{4}=\frac{\mathrm{g}}{(2 \pi)^{3}} \frac{\mathrm{p}^{\nu} \mathrm{d}^{4} \Sigma_{\nu}(\mathrm{x})}{\mathrm{B}(\mathrm{x}, \mathrm{p})+\mathrm{s}_{\mathrm{q}}}
$$

The spatial symmetry is ensured by

$$
\mathrm{s}=\frac{\mathrm{x}^{2}}{\mathrm{X}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{Y}^{2}}+\frac{\mathrm{z}^{2}}{\mathrm{Z}^{2}} \mathrm{u}_{\mu}=\left(\gamma, \frac{\dot{\mathrm{X}}}{\mathrm{X}} \mathrm{x}, \frac{\dot{\mathrm{Y}}}{\mathrm{Y}} \mathrm{y}, \frac{\dot{\mathrm{Z}}}{\mathrm{Z}^{z}}\right)
$$

The velocity field asymmetry is ellipsoidal too - Successful fit with data $[4,5,6]$

Higher order anisotropy

- Finite number of nucleons \Rightarrow generalized geometry

Figure 1: Glauber simulation of a $\mathrm{Pb}+\mathrm{Pb}$ collision [7]

- Experimentally observable [8]

Figure 2: $\mathbf{2}^{\text {nd }}$ and $3^{\text {rd }}$ order oscillation in PHENIX experiment.

- Existing solution with arbitrary spatial geometry [9]
- Higher order anisotropies can be described in generalized Buda-Lund model
- Second order case have already been investigated [10]
- Generalization of the
$\triangleright \ldots$ spatial distribution
$\quad \mathrm{s}=\frac{r^{2}}{R^{2}}\left(1+\sum_{\mathrm{n}} \epsilon_{\mathrm{n}} \cos \left(\mathrm{n}\left(\phi-\boldsymbol{\Psi}_{\mathrm{n}}\right)\right)+\frac{\mathrm{r}_{2}^{2}}{\mathrm{Z}^{2}}\right.$
$\triangleright \ldots$ velocity field

$$
\Phi=\frac{r^{2}}{2} H\left(1+\sum_{n} \chi_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)+\frac{r_{z}^{2}}{2} H_{z}\right.
$$

- Basically any kind of symmetry can be described in the space-time and in the velocity field

Figure 3: Example flow (left hand side) and density distribution (right

Observables

- The angle between the reaction planes $\left(\boldsymbol{\Delta}_{2,3}\right)$ should be averaged out
- If the calculation should be fast then the angle can be set to zero

Figure 4: Different radii with different values of $\boldsymbol{\Delta}_{2,3}$

Invariant spectra

\checkmark Invariant spectra: $\mathbf{N}_{1}(\mathbf{p})=\int \mathbf{d}^{4} \mathbf{x S}(\mathbf{x}, \mathrm{p})$

- The symmetry parameters have no qualitative effect

Figure 5: Azimuthally integrated single-particle $\mathbf{p}_{\mathbf{t}}$ spectra

Flows

- Flow: $\mathbf{v}_{\mathbf{n}}=\langle\boldsymbol{\operatorname { c o s }}(\mathbf{n} \phi)\rangle_{\mathbf{s}}$
- \mathbf{n}-th order flow only depend on \mathbf{n}-th order symmetry parameters
- From the flow measurements the value of the parameters cannot be determined

Oscillating HBT radif

- HBT radii:

$\triangleright R_{\text {out }}^{2}=\left\langle\left(r_{\text {out }}^{2}-\beta_{\mathbf{t}} \mathbf{t}\right)^{2}\right\rangle-\left\langle\mathbf{r}_{\text {out }}^{2}-\beta_{\mathbf{t}} \mathbf{t}\right\rangle^{2}$
$\triangleright R_{\text {out }}^{2 \mathrm{ou}}=\left\langle\left(r_{\text {side }}^{2 \mathrm{~m}}\right)^{2}\right\rangle-\left\langle r_{\text {side }}^{2}\right)^{2}$

Placeholder

Image

Figure 6: Figure caption

Conclusion

aaa

References

[1] K. Adcox et al., Nucl. Phys. A757, 184 (2005) [arXiv:nucl-ex/0410003].
[2] T. Csörgő and B. Lörstad, Phys. Rev. C54, 1390 (1996) [arXiv:hep-ph/9509213].
[3] M. Csanád, T. Csörgő, and B. Lörstad, Nucl. Phys. A742, 80 (2004) [arXiv:nucl-th/0310040].
[4] A. Ster et al., Eur. Phys. J. A47, 58 (2011) [arXiv:1012.5084].
[5] M. Csanád, T. Csörgő, B. Lörstad, and A. Ster, J. Phys. G30, S1079 (2004) [arXiv:nucl-th/0403074].
[6] A. Ster, T. Csörgő, and B. Lörstad, Nucl. Phys. A661, 419 (1999) [arXiv:hep-ph/9907338].
[7] C. Loizides, J. Nagle, and P. Steinberg, [arXiv:1408.2549].
[8] A. Adare et al., Phys. Rev. Lett. 112, 222301 (2014) [arXiv:1401.7680].
[9] M. Csanád and A. Szab, Phys. Rev. C90, 054911 (2014) [arXiv:1405.3877].
[10] M. Csanád, B. Tomášik, and T. Csörgő, Eur. Phys. J. A37, 111 (2008) [arXiv:0801.4434].

Acknowledgments

aaa

