Event-by-event hydrodynamical description of QCD matter

Máté Csanád, Sándor Lökös

Eötvös University, Budapest

53rd International School of Subnuclear Physics, Erice, Sicily, 2015

Outline

(1) sQGP and the hydrodynamical approach
(2) N -pole asymmetries in the description
(3) The elliptical Buda-Lund model and its properties
(1) General asymmetries in the model
(- Observables from the generalized model

sQGP

- sQGP discovered at RHIC and also created at LHC
- Almost perfect fluid, expanding hydrodynamical system
- Hadrons created at the freeze-out, leptons, photons created previous the freeze-out too

Perfect fluid hydrodynamics

- Hydro solutions or models
- Relativistic, exact, analytic solution:
- Famous solution: Landau-Khalatnikov, Hwa-Bjorken
- There is many new solutions
- Geometry?
- The most basic concept: spherical symmetry
- Non-central collisions \rightarrow assuming elliptical asymmetry
- More precise description: higher order asymmetries including!
- Generalize the space-time and the velocity field distribution too!

The elliptical Buda-Lund model

Csanád, Csörgő, Lorstad Nucl.Phys.A742, 80-94 (2004)

- Final state parametrization with source function:

$$
S(x, p)=\frac{g}{(2 \pi)^{3}} \frac{p^{\mu} d^{4} \Sigma_{\mu}(x)}{B(x, p)+s_{q}}
$$

$p^{\mu} d^{4} \Sigma_{\mu}(x)=p_{\mu} u^{\mu} \delta\left(\tau-\tau_{0}\right) d^{4} x$ the Cooper-Frye factor, assuming instant freeze-out. $B(x, p)$ is the Boltzmann-factor.

- Scaling variable:

$$
s=\frac{r_{x}^{2}}{2 X^{2}}+\frac{r_{y}^{2}}{2 Y^{2}}+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- Thermodynamical quantities depend only on s not on the coordinates
- Derived the velocity field from a potential: $u_{\mu}=\gamma\left(1, \partial_{x} \Phi, \partial_{y} \Phi, \partial_{z} \Phi\right)$

$$
\Phi=\left(r_{x}^{2} \frac{\dot{X}}{2 X}+r_{y}^{2} \frac{\dot{Y}}{2 Y}+r_{z}^{2} \frac{\dot{Z}}{2 Z}\right)
$$

Generalization

Spatial distribution (with ϵ_{n} asymmetry parameter):

- Elliptical symmetry: $s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos (2 \varphi)\right)+\frac{r_{2}^{2}}{Z^{2}}$
- Triangular symmetry: $s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{3} \cos (3 \varphi)\right)+\frac{r_{z}^{2}}{Z^{2}}$
- Generally:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\sum_{n=2}^{N} \epsilon_{n} \cos (n \varphi)\right)+\frac{r_{z}^{2}}{Z^{2}}
$$

This s can be use in a hydro solution: Csanád, Szabó PhysRevC.90.054911 The generalized potential of velocity field (with χ_{n} asymmetry parameter):

- Elliptical symmetry: $\Phi=\frac{r^{2}}{2 H}\left(1+\chi_{2} \cos (2 \varphi)\right)+\frac{r_{z}^{2}}{2 H_{z}}$
- Triangular symmetry: $\Phi=\frac{r^{2}}{2 H}\left(1+\chi_{3} \cos (3 \varphi)\right)+\frac{r_{z}^{2}}{2 H_{z}}$
- Generally:

$$
\Phi=\frac{r^{2}}{2 H}\left(1+\sum_{n=2}^{N} \chi_{n} \cos (n \varphi)\right)+\frac{r_{z}^{2}}{2 H_{z}}
$$

Observables from the new model

- Invariant momentum distribution: $N_{1}(p)=\int S(x, p) d^{4} x$
- Flows: $N_{1}(p)=N_{1}\left(p_{t}\right)\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos (n \alpha)\right)$ where the flow $v_{n}\left(p_{t}\right)=\langle\cos (n \alpha)\rangle$
- Bose-Einstein correlations: The correlation function is the Fourier transformation of the source function: $C(q)=1+\left|\int S(r) \exp (i q r) d r\right|^{2}$
- The asymmetries is measured in the corresponding event plane
- Elliptical asymmetry $\rightarrow 2^{\text {nd }}$ order event plane
- Triangular asymmetry $\rightarrow 3^{\text {rd }}$ order event plane

- No interplay among the asymmetries!

Flows from the model

- Elliptic $\left(v_{2}\right)$ and triangular $\left(v_{3}\right)$ flows can be derived from the model
- Mixing of the parameters: the spatial distribution asymmetry $\left(\epsilon_{2,3}\right)$ and the velocity field asymmetry $\left(\chi_{2,3}\right)$ are form the flows together

Azimuthally sensitive HBT radii

Useful to describe the geometry of the source

- The correlation function is the Fourier transformation of the source
- Elliptical
case: both of it is Gaussian but with inverse width

$$
S(r) \sim e^{-\frac{r_{x}^{2}}{2 R_{x}^{2}}-\frac{r_{y}^{2}}{2 R_{y}^{2}}-\frac{r_{z}^{2}}{2 R_{z}^{2}}} \rightarrow C(k)=1+e^{-k_{x}^{2} R_{x}^{2}-k_{y}^{2} R_{y}^{2}-k_{z}^{2} R_{z}^{2}}
$$

- Size and geometry of the source can be measured!
- Experimentally it is measured in the out - side - long pair coordinates: $R_{x, y, z} \rightarrow R_{o, s, l}$

- The difference between out and side radii is indicate the kind of phase transition

Azimuthally sensitive HBT radii

The transverse angle which is appear in momentum space: $\left(p_{t}, \alpha, p_{z}\right)$.

$$
\begin{aligned}
R_{o}^{2} & =\left\langle x_{o}^{2}\right\rangle-\left\langle x_{o}\right\rangle^{2}, \quad R_{s}^{2} & =\left\langle x_{s}^{2}\right\rangle-\left\langle x_{s}\right\rangle^{2} \\
\text { where: } x_{o} & =r \cos (\varphi-\alpha), \quad x_{s} & =r \sin (\varphi-\alpha)
\end{aligned}
$$

The average is an integrating over the source function with weight x_{0} or x_{s} respect the spatial coordinates $\left(r, \varphi, r_{z}\right)$
Parametrization: Elliptical case: $R_{o / s}^{2}=R_{o / s, 0}^{2}+R_{o / s, 2}^{2} \cos (2 \alpha)$ Parametrization: Triangular case: $R_{o / s}^{2}=R_{o / s, 0}^{2}+R_{o / s, 3}^{2} \cos (3 \alpha)$

Azimuthally sensitive HBT radii

Mixing of the parameters: spatial distribution and velocity field form the azimuthally sensitive HBT radii together.
Elliptical case: in the second order reaction plane
ϵ_{2} : asymmetry in space-time, χ_{2} : asymmetry in velocity field Parametrization: Elliptical case: $R_{o / s}^{2}=R_{o / s, 0}^{2}+R_{o / s, 2}^{2} \cos (2 \alpha)$

Azimuthally sensitive HBT radii

Mixing of the parameters: spatial distribution and velocity field form the azimuthally sensitive HBT radii together.
Triangular case: in the third order reaction plane
ϵ_{3} : asymmetry in space-time, χ_{3} : asymmetry in velocity field Parametrization: Triangular case: $R_{o / s}^{2}=R_{o / s, 0}^{2}+R_{o / s, 3}^{2} \cos (3 \alpha)$

Conclusion and outlook

- Hydrodynamical approach can be used as a phenomenological tool to describe QCD matter
- The geometry of the source can be investigated
- General asymmetries can be built into a model
- Observables can be derived from the generalized model
- No mixing between $2^{\text {nd }}$ and $3^{\text {rd }}$ order asymmetries
- There is mixing between the spatial and velocity field asymmetries
- It is important to explore these mixing based on a realistic model

THANK YOU FOR YOUR ATTENTION!

Values of the parameters

Name	Value
m	140
T_{0}	170
a^{2}	0.1
b	-0.1
R	10
Z	15
H	10
H_{z}	16
ϵ_{2}	0.0
χ_{2}	0.0
ϵ_{3}	0.0
χ_{3}	0.0

Effect of the parameter on the source

$$
\varepsilon_{2}=0.8, \varepsilon_{3}=0, \varepsilon_{4}=0 \quad \varepsilon_{2}=0.8, \varepsilon_{3}=0.5, \varepsilon_{4}=0 \quad \varepsilon_{2}=0.8, \varepsilon_{3}=0.5, \varepsilon_{4}=0.4
$$

