Event-by-event hydrodynamical description of QCD matter

Máté Csanád, <u>Sándor Lökös</u>

Eötvös University, Budapest

53rd International School of Subnuclear Physics, Erice, Sicily, 2015

- sQGP and the hydrodynamical approach
- One of the symmetries in the description
- The elliptical Buda-Lund model and its properties
- General asymmetries in the model
- Observables from the generalized model

sQGP

- sQGP discovered at RHIC and also created at LHC
- Almost perfect fluid, expanding hydrodynamical system
- Hadrons created at the freeze-out, leptons, photons created previous the freeze-out too

Perfect fluid hydrodynamics

- Hydro solutions or models
- Relativistic, exact, analytic solution:
 - Famous solution: Landau-Khalatnikov, Hwa-Bjorken
 - There is many new solutions
 - Geometry?
- The most basic concept: spherical symmetry
- ullet Non-central collisions o assuming elliptical asymmetry
- More precise description: higher order asymmetries including!
- Generalize the space-time and the velocity field distribution too!

The elliptical Buda-Lund model

Csanád, Csörgő, Lorstad Nucl. Phys. A742, 80-94 (2004)

• Final state parametrization with source function:

$$S(x,p) = \frac{g}{(2\pi)^3} \frac{p^{\mu} d^4 \Sigma_{\mu}(x)}{B(x,p) + s_q}$$

 $p^{\mu}d^{4}\Sigma_{\mu}(x) = p_{\mu}u^{\mu}\delta(\tau - \tau_{0})d^{4}x$ the Cooper-Frye factor, assuming instant freeze-out. B(x, p) is the Boltzmann-factor.

Scaling variable:

$$s = \frac{r_x^2}{2X^2} + \frac{r_y^2}{2Y^2} + \frac{r_z^2}{2Z^2}$$

- Thermodynamical quantities depend only on s not on the coordinates
- Derived the velocity field from a potential: $u_{\mu} = \gamma (1, \partial_x \Phi, \partial_y \Phi, \partial_z \Phi)$

$$\Phi = \left(r_x^2 \frac{\dot{X}}{2X} + r_y^2 \frac{\dot{Y}}{2Y} + r_z^2 \frac{\dot{Z}}{2Z} \right)$$

Generalization

Spatial distribution (with ϵ_n asymmetry parameter):

- Elliptical symmetry: $s = \frac{r^2}{R^2}(1 + \epsilon_2 \cos(2\varphi)) + \frac{r_z^2}{Z^2}$
- Triangular symmetry: $s = \frac{r^2}{D^2} (1 + \epsilon_3 \cos(3\varphi)) + \frac{r_z^2}{Z^2}$
- Generally:

$$s = \frac{r^2}{R^2} \left(1 + \sum_{n=2}^{N} \epsilon_n \cos(n\varphi) \right) + \frac{r_z^2}{Z^2}$$

This s can be use in a hydro solution: Csanád, Szabó PhysRevC.90.054911 The generalized potential of velocity field (with χ_n asymmetry parameter):

- Elliptical symmetry: $\Phi = \frac{r^2}{2H} (1 + \chi_2 \cos(2\varphi)) + \frac{r_z^2}{2H_z}$ Triangular symmetry: $\Phi = \frac{r^2}{2H} (1 + \chi_3 \cos(3\varphi)) + \frac{r_z^2}{2H_z}$
- Generally:

$$\Phi = \frac{r^2}{2H} \left(1 + \sum_{n=2}^{N} \chi_n \cos(n\varphi) \right) + \frac{r_z^2}{2H_z}$$

Observables from the new model

- Invariant momentum distribution: $N_1(p) = \int S(x, p) d^4x$
- Flows: $N_1(p) = N_1(p_t) (1 + 2 \sum_{n=1}^{\infty} v_n \cos(n\alpha))$ where the flow $v_n(p_t) = \langle \cos(n\alpha) \rangle$
- Bose-Einstein correlations: The correlation function is the Fourier transformation of the source function: $C(q) = 1 + |\int S(r) \exp(iqr) dr|^2$
- The asymmetries is measured in the corresponding event plane
 - $\bullet~{\sf Elliptical}~{\sf asymmetry} \to 2^{\sf nd}~{\sf order}~{\sf event}~{\sf plane}$
 - $\bullet~{\rm Triangular}~{\rm asymmetry} \to 3^{\rm rd}~{\rm order}$ event plane

• No interplay among the asymmetries!

Flows from the model

- Elliptic (v_2) and triangular (v_3) flows can be derived from the model
- Mixing of the parameters: the spatial distribution asymmetry $(\epsilon_{2,3})$ and the velocity field asymmetry $(\chi_{2,3})$ are form the flows together

Useful to describe the geometry of the source

- The correlation function is the Fourier transformation of the source
- Elliptical case: both of it is Gaussian but with inverse width

$$S(r) \sim e^{-rac{r_x^2}{2R_x^2} - rac{r_y^2}{2R_y^2} - rac{r_z^2}{2R_z^2}}
ightarrow C(k) = 1 + e^{-k_x^2 R_x^2 - k_y^2 R_y^2 - k_z^2 R_z^2}$$

- Size and geometry of the source can be measured!
- Experimentally it is measured in the *out − side − long* pair coordinates: R_{x,y,z} → R_{o,s,I}
- The difference between out and side radii is indicate the kind of phase transition

Azimuthally sensitive HBT radii

The transverse angle which is appear in momentum space: (p_t, α, p_z) .

$$R_o^2 = \langle x_o^2 \rangle - \langle x_o \rangle^2 \quad , \quad R_s^2 = \langle x_s^2 \rangle - \langle x_s \rangle^2$$

where: $x_o = r \cos(\varphi - \alpha) \quad , \quad x_s = r \sin(\varphi - \alpha)$

The average is an integrating over the source function with weight x_o or x_s respect the spatial coordinates (r, φ, r_z) Parametrization: Elliptical case: $R_{o/s}^2 = R_{o/s,0}^2 + R_{o/s,2}^2 \cos(2\alpha)$ Parametrization: Triangular case: $R_{o/s}^2 = R_{o/s,0}^2 + R_{o/s,3}^2 \cos(3\alpha)$

10/15

Azimuthally sensitive HBT radii

Mixing of the parameters: spatial distribution and velocity field form the azimuthally sensitive HBT radii together. Elliptical case: in the second order reaction plane ϵ_2 : asymmetry in space-time, χ_2 : asymmetry in velocity field Parametrization: Elliptical case: $R_{o/s}^2 = R_{o/s,0}^2 + R_{o/s,2}^2 \cos(2\alpha)$

★ 4월 > 4월 > 4월 > 월 - 의 Q (*) 11/15

Azimuthally sensitive HBT radii

Mixing of the parameters: spatial distribution and velocity field form the azimuthally sensitive HBT radii together. Triangular case: in the third order reaction plane ϵ_3 : asymmetry in space-time, χ_3 : asymmetry in velocity field Parametrization: Triangular case: $R_{o/s}^2 = R_{o/s,0}^2 + R_{o/s,3}^2 \cos(3\alpha)$

Conclusion and outlook

- Hydrodynamical approach can be used as a phenomenological tool to describe QCD matter
- The geometry of the source can be investigated
- General asymmetries can be built into a model
- Observables can be derived from the generalized model
- No mixing between 2nd and 3rd order asymmetries
- There is mixing between the spatial and velocity field asymmetries
- It is important to explore these mixing based on a realistic model

THANK YOU FOR YOUR ATTENTION!

Values of the parameters

Name	Value
m	140
T ₀	170
a ²	0.1
Ь	-0.1
R	10
Z	15
H	10
Hz	16
ϵ_2	0.0
χ2	0.0
ϵ_3	0.0
χ3	0.0

