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Abstract. We generalize a previously known class of exact analytic solutions of relativistic perfect fluid
hydrodynamics for the first time to arbitrary temperature-dependent Equation of State. We investigate
special cases of this class of solutions, in particular, we present hydrodynamical solutions with an Equation
of State determined from lattice QCD calculations. We discuss the phenomenological relevance of these
solutions as well.

1 Introduction

The interest in relativistic hydrodynamics has grown in
the past years mainly due to the discovery of the al-
most perfect fluidity of the experimentally created Quark-
Gluon Plasma at the Relativistic Heavy Ion Collider
(RHIC) [1,2]. Hydrodynamical models aim to describe the
space-time picture of heavy-ion collisions and infer the re-
lation between experimental observables and the initial
conditions. Besides numerical simulations there is also in-
terest in models where exact solutions of the hydrody-
namical equations are used. Aside from historical exact
solutions (such as the Landau-Khalatnikov solution [3, 4]
and the Hwa-Bjorken solution [5,6]) which were important
in the development of hydrodynamical model building in
high-energy physics, one can find recent examples of exact
solutions which yield analytic insight into the dynamics
of heavy-ion collisions (see, e.g., refs. [7–9] and references
therein).

In this paper we generalize a previously known class of
exact solutions of relativistic perfect fluid hydrodynam-
ics [10] to the case of arbitrary, temperature-dependent
speed of sound, as detailed in the next sections. The men-
tioned class of solutions form the basis of the relativistic
Buda-Lund hydrodynamical model [11]. This model yields
a successful description of hadronic observables at RHIC
energies (such as the pseudorapidity and transverse mo-
mentum dependence of the azimuthal anisotropy of dif-
ferent hadrons as well as the HBT radii [11]), and the
reconstructed final state in this model corresponds to sim-
ple explicit scaling solutions of hydrodynamics. The same
final state however can be reached from many different
initial states, depending on the Equation of State [12]. If

a e-mail: csanad@elte.hu

one is given a temperature dependent speed of sound as
Equation of State, the solution presented in this paper
thus can be used to determine the initial state from the
reconstructed final state of a heavy-ion collision assuming
the validity of perfect fluid hydrodynamics. As an exam-
ple, we describe the time dependence of the system if one
assumes an Equation of State calculated in lattice QCD.

The solutions given in this paper are the first exact
analytic solutions of 1+3 dimensional relativistic hydro-
dynamics, to utilize an arbitrary Equation of State1.

2 Basic equations

Let us adopt the following notational conventions: the
space-time coordinates shall be xµ = (t, r), where r =
(rx, ry, rz) is the spatial coordinate and t is the time in
lab-frame. The metric tensor is gµν = diag (1,−1,−1,−1).
(We denote space-time indices by Greek letters, space in-
dices by Latin letters and assume the summation conven-
tion.) The fluid four-velocity is uµ = γ (1,v), where v is

the three-velocity with v = |v|, and γ = 1/
√

1 − v2. The
thermodynamical quantities are denoted as follows: p is
the pressure, ε is the energy density, σ is the entropy den-
sity, T is the temperature. If the fluid consists of individual
conserved particles, or if there is some conserved charge,
then the conserved number density is denoted by n, and
the corresponding chemical potential by µ. (For more than
one conserved number densities, one may use indices to

1 Note that it has been discussed, in ref. [13], that the en-
tropy flow can be calculated with an arbitrary EoS (Equation
of State, speed of sound) from the Khalatnikov-potential, once
the solution of the general Khalatnikov equation is known.
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distinguish them.) All these quantities have dependence
on xµ, but mostly this will not be explicitly written.

The basic hydrodynamical equations are the continuity
and energy-momentum–conservation equations

∂µ (nuµ) = 0, (1)

∂νTµν = 0. (2)

The energy-momentum tensor of a perfect fluid is

Tµν = (ε + p) uµuν − pgµν . (3)

Equation (2) can be then transformed into (by projecting
it orthogonal and parallel to uµ, respectively)

(ε + p) uν∂νuµ = (gµν − uµuν) ∂νp, (4)

(ε + p) ∂νuν + uν∂νε = 0. (5)

Equation (4) is the relativistic Euler equation, while
eq. (5) is the relativistic form of the energy conservation
equation. In appendix A we recall the well-known fact that
eq. (5) is equivalent to the entropy conservation equation

∂µ (σuµ) = 0. (6)

An analytic hydrodynamical solution is a functional
form of ε, p, T , uµ (and, if dealt with, n), which solves
eqs. (4) and (5), and, if present, n also solves eq. (1).
The quantities ε, p, T , and also σ and n are subject to the
Equation of State (EoS), which closes the set of equations.
We investigate the following EoS:

ε = κ (T ) p, (7)

while the speed of sound cs is calculated as

cs =

√

∂p

∂ε
, (8)

i.e. for constant κ, cs = 1/
√

κ. We see from this that
the case of temperature-dependent cs is equivalent to the
case of a temperature-dependent κ coefficient. For the case
when there is a conserved n number density, we also use
the well-known relation for ideal gases,

p = nT. (9)

For the case of κ (T ) = constant, an ellipsoidally sym-
metric solution of the hydrodynamical equations is pre-
sented in ref. [10],

uµ =
xµ

τ
, τ =

√

t2 − r2 =
√

xµxµ, (10)

n = n0

V0

V
ν (s) , T = T0

(

V0

V

)
1

κ 1

ν (s)
, V = τ3, (11)

where n0 and T0 correspond to the proper time when the

arbitrarily chosen volume V0 was reached (i.e. τ0 = V
1/3

0
),

ν (s) is an arbitrary function of s, which is defined as

s =
r2
x

X2
+

r2
y

Y 2
+

r2
z

Z2
, (12)

where X, Y , and Z are the time (lab-frame time t) depen-
dent principal axes of an expanding ellipsoid. They have
the explicit time dependence as

X = Ẋ0t, Y = Ẏ0t, Z = Ż0t, (13)

with Ẋ0, Ẏ0, Ż0 constants. The quantity s has ellipsoidal
level surfaces, and obeys uν∂νs = 0. We call s a scaling
variable, and V the effective volume of a characteristic
ellipsoid.

Note that with the X(t), Y (t), Z(t) time-dependent
axes introduced as above, we can write the velocity field
in the form of

v =

(

Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz

)

, (14)

which underlines the resemblance of this solution to cer-
tain non-relativistic exact solutions with Hubble-like ex-
pansion [14, 15]. This solution is non-accelerating, i.e.
obeys uν∂νuµ = 0. In the next section we present a gen-
eralization of this class of solutions to more general EoS.
The new solutions will be presented in sect. 4, while sect. 3
details their derivation.

3 General Equation of State

In order to find more general solutions, where a
temperature-dependent EoS can be used (as in eq. (7)),
for a given uµ velocity field we may define the V and s
quantities by their properties that

uµ∂µV = V ∂µuµ, uµ∂µs = 0. (15)

With these quantities, eq. (1) is automatically solved (for
the case when there is a conserved charge present) if

n = n0

V0

V
ν (s) (16)

again, with arbitrary ν (s) function. Similarly, eq. (6) is
also automatically solved if

σ = σ0

V0

V
ν (s) . (17)

To solve the (5) energy equation, we must make a dis-
tinction between the two possible cases. The first case is
if we take a conserved n into account, and use the EoS
ε = κ (T ) p, p = nT as in eqs. (7) and (9). The second
case is when we do not consider any conserved n. In ap-
pendix B we show that in both of these two cases the en-
ergy equation eq. (5) can be transformed to an equation
for T : in the first case with conserved n, we have

uµ

[

∂µV

V
+

d(κT )

dT

∂µT

T

]

= 0, (18)

while, in the case where there is no conserved n, we have

uµ

[

∂µV

V
+

(

1

κ + 1

dκ

dT
+

κ

T

)

∂µT

]

= 0. (19)
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Remarkably, these equations are not the same (however,
we may note that in the case when κ = const., they yield
the same condition). We call eqs. (18) and (19) the temper-
ature equations for the two cases. With the introduction
of the f (T ) function as

f(T ) = exp

{

∫ T

T0

(

1

β

d

dβ
[κ (β) β]

)

dβ

}

, (20)

for the case of conserved n; while for the case without a
conserved n, as

f(T ) = exp

{

∫ T

T0

(

κ (β)

β
+

1

κ (β) + 1

dκ (β)

dβ

)

dβ

}

,

(21)

the temperature equations can be cast in the following
universal form:

uµ

[

∂µV

V
+

∂µf(T )

f(T )

]

= 0. (22)

For any given κ(T ) function we can then determine f(T ).
The solution of the above equation is then

f(T ) =
V0

V
ξ (s) ⇒ T = f−1

(

V0

V
ξ (s)

)

, (23)

with an arbitrary ξ (s) function. (For convenience, we may
normalize ξ (s) so that ξ(0) = 1.) Taking into account the
uµ∂µs = 0 relation, it is easy to see that eq. (23) indeed
solves eq. (22).

An important point is that if κ = constant, then
eqs. (20), (21) and (23) simplify to

f(T ) =

(

T

T0

)κ

⇒ T = T0

(

V0

V

)1/κ

ξ(s)1/κ, (24)

so we indeed get back the original solution of ref. [10].
As a generalization of the solution recalled in the pre-

vious section, we assume that uµ and thus s and V have
the same forms as in eqs. (10) and (12),

uµ =
xµ

τ
, V = τ3, s =

r2
x

Ẋ2
0
t2

+
r2
y

Ẏ 2
0

t2
+

r2
z

Ż2
0
t2

. (25)

Now let us check the remaining equation, the Euler
equation of (4). For this velocity field, uν∂νuµ = 0, the
Euler equation is equivalent to

∂µp = uµuν∂νp. (26)

In the case of vanishing n, using the thermodynamic rela-
tion dp = σdT , eq. (26) simplifies to

∂µT = uµuν∂νT. (27)

Let us substitute the expression of T from eq. (23), and
consider that ∂µs �= 0, and f−1 cannot be constant. We

find that eq. (27) is equivalent (for any κ (T ), thus for any
f(T ) function) to

f−1′

(

V0

V
ξ (s)

)

ξ′ (s)

ξ (s)
∂µs = 0 ⇒ ξ (s) = const. (28)

In the case of non-vanishing n, using eq. (16) and p =
nT , the Euler equation for our non-accelerating velocity
field transforms into the following equation:

T∂µn + n∂µT = Tuµuν∂νn + nuµuν∂νT. (29)

Substituting n and T from eqs. (16) and (23), and the
definition of V , we get, from this equation, the following
constraint:

[

ν′ (s)

ν (s)
+ ϕ

(

V0

V
ξ (s)

)

ξ′ (s)

ξ (s)

]

∂µs = 0, (30)

where we have introduced the following function,

ϕ(y) =
yf−1′(y)

f−1(y)
. (31)

Since ∂µs �= 0, we see from eq. (30) that there are two
simple cases: for any EoS (i.e. for any κ (T ) and thus any
ϕ function) we get a solution if ν (s) = ξ (s) = 1. The
other possibility is if κ = const. It is easy to see that in
this case

ϕ(y) =
1

κ
= const., (32)

and so eq. (30) is solved if ξ = ν−1/κ and so from eq. (24)

we get T = T0 (V0/V )
1/κ

ν−1(s), i.e. the same as in
eq. (11) (see appendix C, for details). In this case we
indeed obtain the known solution of ref. [10], recited in
eqs. (10)–(12).

4 New solutions for general Equation of State

Summarizing and rewriting the results presented in the
previous section, we found new solutions to the relativistic
hydrodynamical equations for arbitary ε = κ (T ) p Equa-
tion of State, and these are the first solutions of their kind
(i.e. with a non-constant EoS). In the case where we do
not consider any conserved n density, the solution can be
presented in the following form, in terms of uµ, σ and T ,
with T given in an implicit form:

σ = σ0

τ3
0

τ3
, (33)

uµ =
xµ

τ
, (34)

τ3
0

τ3
= exp

{

∫ T

T0

(

κ (β)

β
+

1

κ (β) + 1

dκ (β)

dβ

)

dβ

}

, (35)

where eq. (33) was obtained similarly to eq. (11), while
eq. (35) can be derived from eqs. (21) and (23). Also, for
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the case when the pressure is expressed as p = nT with
some conserved n density, the new solution is written in
terms of uµ, T and n as

n = n0

τ3
0

τ3
, (36)

uµ =
xµ

τ
, (37)

τ3
0

τ3
= exp

{

∫ T

T0

(

1

β

d

dβ
[κ (β) β]

)

dβ

}

, (38)

where again, the last equation was obtained from
eqs. (20) and (23). Note that these solutions form sim-
ple generalization of the ν (s) = 1 case of the solutions of
ref. [10], and the latter also represents a relativistic gen-
eralization of the solution presented in ref. [15].

Note that in both cases, the quantities denoted by the
subscript 0 (n0, T0, σ0) correspond to the proper-time τ0,
which can be chosen arbitrarily. If, for example, τ0 is taken
to be the freeze-out proper time, then T0 is the freeze-out
temperature.

An important point is that in the case when p = nT
and n is conserved, for some choices of the κ (T ) function
our solution becomes ill-defined. The criterion of

d

dT
(κ (T )T ) > 0 (39)

limits the applicability of solutions for the case of con-
served n presented here. In the case when for some T
range d

dT (κ (T ) T ) becomes negative, the implicit form of
eq. (38) cannot be inverted to give a unique T (τ) function.
Such domains of T indeed might exist in some parameter-
izations of a lattice QCD Equation of State around the
quark-hadron transition temperature (as detailed in the
next section, in particularly on fig. 1). This is due to the
fact that the condition d

dT (κ (T )T ) > 0 is equivalent to
∂T (ε, n)/∂ε > 0 for constant n, which is again equivalent
to the positiveness of the specific heat, which may not be
valid at phase transitions. However, even for these cases,
one can use the solution without conserved n, presented in
eqs. (33)–(35). This is the physically relevant solution in
this case, since at the transition temperature a conserved
density n yielding pressure as p = nT may not be present.

Let us briefly mention another possibility, when κ is a
function of the pressure p and not that of the temperature
T . In this case a new solution, similarly to the previous
ones is the following:

σ = σ0

τ3
0

τ3
, (40)

uµ =
xµ

τ
, (41)

τ3
0

τ3
= exp

{
∫ p

p0

(

κ (β)

β
+

dκ (β)

dβ

)

dβ

κ (β) + 1

}

, (42)

i.e. almost the same as in eq. (35), except that here the
integration variable is the pressure p. If however the pres-
sure can be written as a function of temperature, i.e. as
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Fig. 1. (Colour on-line) The temperature dependence of the
EoS parameter κ from ref. [16] is shown with the solid black
curve. Note that in the shaded T range (173 MeV–230 MeV)
d

dT
(κ (T ) T ) (red dashed line) becomes negative, thus the im-

plicit form of eq. (38) cannot be inverted to give a unique T (τ)
function. Hence we will substitute this κ(T ) in the hydrody-
namic solution shown in eqs. (33)–(35).

p(T ), an integral transformation can be made with and
we get back eq. (35), so in this case these solutions are
identical. This solution may be used if a κ(p) function is
given (without relation to the temperature) by an arbi-
trary energy density function ε(p) = κ(p)p.

5 Application

Recently, a QCD Equation of State has been calculated
by the Budapest-Wuppertal group in ref. [16]. Here (in
their eq. (3.1) and table 2) they give a parametrization
of the trace anomaly as a function of temperature. Hence
the pressure, the energy density and finallly the EoS pa-
rameter κ can be calculated, as a function of the temper-
ature. We did this calculation, and got the κ(T ) function
as shown in fig. 1. Note however, that in this calculation
for some T range d

dT (κ (T ) T ) becomes negative, as also
shown in fig. 1. Hence the implicit form of eq. (38) can-
not be inverted to give a unique T (τ) function. We can
still use the solution without conserved number density n,
presented in eqs. (33)–(35).

We utilized the obtained κ(T ) and calculated the time
evolution of the temperature of the fireball from this so-
lution of relativistic hydrodynamics. The result is shown
in fig. 2. Clearly, temperature falls off almost as fast as in
case of a constant κ = 3, an ideal relativistic gas. Hence a
given freeze-out temperature yields a significantly higher
initial temperature than a higher κ (i.e. a low c2

s) would.
Let us fix the freeze-out temperature to be Tf =

170MeV, for example (and let all the quantities with sub-
script 0 correspond to the freeze-out, thus index them with
f). In this case, already at 0.3× τf (30% of the freeze-out
time), temperatures 2.5–3× higher than at the freeze-out
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Fig. 2. (Colour on-line) Time dependence of the temperature
T (τ) (normalized with the freeze-out time τf and the freeze-out
temperature Tf ). The four thin red lines show this dependence
in case of constant κ values, while the thicker blue lines show
results based on the EoS of ref. [16]. The resulting curve slightly
depends on the value of Tf . It is clear, however, that the tem-
perature fall-off is almost as fast in the lQCD EoS case as in
the case of fixed κ = 3, which resembles a relativistic ideal gas.
This means that a fixed freeze-out temperature (which can-
not vary too much due to the known quark-hadron transition
temperature) results in a very high initial temperature.

can be reached. To give a quantitative example, if

τf = 8 fm/c and τinit = 1.5 fm/c, (43)

then

Tf = 170MeV ⇒ Tinit ≈ 550MeV (44)

(and even higher if τinit is smaller). The QCD Equation of
State of ref. [16] and this hydro solution yields a general
T (τ) dependence. If the freeze-out temperature Tf and
the time evolution duration τf/τinit are known, the initial
temperature of the fireball can be easily calculated.

6 Conclusion

We have presented the first analytic solutions of the equa-
tions of relativistic perfect fluid hydrodynamics for gen-
eral temperature-dependent speed of sound (i.e. general
Equation of State). They can be seen as generalizations of
previously known exact solutions [10]. However, our new
solutions are spherically symmetric, thus possible general-
izations of them are definitely worth exploring: solutions
for the non-accelerating case and for more general ellip-
soidal symmetry would be able to analytically explore the
time evolution of other hadronic observables such as the
elliptic flow (v2).

We have shown how to use our solutions to fully uti-
lize a lattice QCD Equation of State for exploring the
initial state of heavy-ion reactions based on the recon-
structed final state in the Buda-Lund hydrodynamical

model. In
√

sNN = 200GeV Au+Au collisions, our in-
vestigations reveal a very high initial temperature con-
sistent with calculations based on the measurement spec-
trum of low momentum direct photons [17]. If it is given a
temperature-dependent direct photon emission function,
then this model can be used to calculate direct photon
spectra to be compared to measurements, as in ref. [18],
but with a realistic Equation of State.

This work was supported by the NK-101438 OTKA grant and
the Bolyai Scholarship (Hungarian Academy of Sciences) of
M. Csanád. The authors also would like to thank T. Csörgő
for motivating and valuable discussions.

Appendix A. Entropy conservation

The fundamental thermodynamical relations connecting
ε, T , σ, p, and any types of na conserved charges (the in-
dex a, here, distinguishes is between chemical component
types) and the corresponding µa chemical potentials are

ε + p = Tσ +
∑

a

naµa, (A.1)

dε = Tdσ +
∑

a

µadna, (A.2)

dp = σdT +
∑

a

nadµa. (A.3)

In the case where there are no conserved charges, simi-
lar relations hold with all na and µa variables omitted.
Substituting these in the (5) energy conservation equa-
tion, we immediately obtain the continuity equation for
the entropy density σ (simplified for the case of a single-
component fluid)

Tσ∂µuµ + Tuµ∂µσ + n∂µuµ + uµ∂µn = 0, (A.4)

which is, for conserved (or vanishing) n, equivalent to

∂ν (σuν) = 0, (A.5)

which is the entropy conservation, eq. (6).

Appendix B. The temperature equations

In the case when there is no conserved n, we can substitute
the (A.2) and (A.3) thermodynamic relations for vanishing
n in eq. (5). Using the EoS as ε = κ (T ) p, and ε+p = Tσ
and dp = σdT we obtain, from eq. (5), the following:

Tσ

[

∂µuµ +
1

κ + 1

dκ

dT
uµ∂µT

]

+ κσ uµ∂µT = 0, (B.1)

which is, by using eq. (15) again, equivalent to eq. (19),
as was to be demonstrated.

Next, we would like to obtain an equation for the tem-
perature with our specific Equation of State as in eq. (7)
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(ε = κ (T ) p), in the case when there is a conserved n and
p = nT . We can substitute these into eq. (5), and use
the (1) continuity equation for n to infer that eq. (5) is
equivalent to the following:

T∂µuµ +
d

dT
(κT ) uµ∂µT = 0. (B.2)

Introducing V by using eq. (15), we immediately see that
this is equivalent to eq. (18), as it is stated in the text.

Let us also show how the solution for a given κ(p),
described in eqs. (40)–(42) can be obtained. In that case,
instead of substituting the temerature to eq. (5), we write
up the equation using the κ(p) function and the relation
ε = κ · p, similarly to the previous cases,

uν

[

∂νV

V
+

(

κ

p
+

dκ

dp

)

∂νp

κ + 1

]

= 0. (B.3)

This equation is then solved by the implicit formula on
the pressure, given in eq. (42)

Appendix C. Euler equation for a conserved

charge

In the case of non-vanishing n, the Euler equation of
eq. (29) can be expressed as

∂µn

n
+

∂µT

T
= uµ

uν

n
∂νn + uµ

uν

T
∂νT. (C.1)

Using eqs. (16) and (23), we find

∂µT

T
=

f−1′
(

V0

V ξ(s)
)

V0

V ξ(s)

f−1
(

V0

V ξ(s)
)

[

ξ′(s)

ξ(s)
∂µs − ∂µV

V

]

, (C.2)

∂µn

n
=

ν′(s)

ν(s)
∂µs − ∂µV

V
. (C.3)

Multiplying these by uµ and substituting µ → ν, we get

uν

T
∂νT = −f−1′

(

V0

V ξ(s)
)

V0

V ξ(s)

f−1
(

V0

V ξ(s)
) ∂νuν , (C.4)

uν

n
∂νn = −∂νuν . (C.5)

In our case of eq. (25), however,

uµ∂νuν =
∂µV

V
. (C.6)

Substituting eqs. (C.2)–(C.6) to eq. (C.1), we get

[

ν′ (s)

ν (s)
+

f−1′
(

V0

V ξ(s)
)

V0

V ξ(s)

f−1
(

V0

V ξ(s)
)

ξ′ (s)

ξ (s)

]

∂µs = 0, (C.7)

which is the same as eq. (30).

If κ = const., f(T ) is expressed in eq. (24). From this,
using the definition of ϕ(y) in eq. (31),

f−1′(y) =
T0y

1/κ−1

κ
=

f−1(y)

κy
⇒ ϕ(y) =

1

κ
, (C.8)

thus eq. (C.7) transforms to

[

ν′ (s)

ν (s)
+

1

κ

ξ′ (s)

ξ (s)

]

∂µs = 0, (C.9)

which is identically zero if ξ = ν−1/κ, thus, from eq. (24),

T = T0

(

V0

V

)1/κ

ν(s)−1, (C.10)

and we indeed obtain the known solution of ref. [10] shown
in eqs. (10)–(12).
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