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The Buda-Lund model describes an expanding hydrodynamical system with ellipsoidal symmetry
and �ts the observed elliptic �ow and oscillating HBT radii successfully. The ellipsoidal symmetry can
be characterized by the second order harmonics of the transverse momentum distribution, and it can be
also observed in the azimuthal oscillation of the HBT radii measured versus the second order reaction
plane. The model can be changed to describe the experimentally indicated higher order azimuthal
asymmetries. In this paper we detail an extension of the Buda-Lund hydro model to investigate higher
order �ow harmonics and triangular azimuthal oscillations of the HBT radii.

PACS numbers: 25.75.Gz, 25.75.Ld, 25.75.-q, 25.75.Ag

1. Introduction

The investigation of Bose-Einstein correlation functions and their widths, the so-called HBT radii is
a useful tool to measure properties of the strongly interacting quark-gluon plasma (sQGP) such as the
size or the asymmetries of the medium. The method originally had been discovered by Hanbury-Brown
and Twiss [1] in radioastronomy and Goldhaber and collaborators developed it to measure the size of
the soft particle emitting source in heavy ion reactions [2]. If the source is not azimuthally symmetric,
then the HBT radii also depend on the azimuthal angle. To observe this dependence of the HBT radii,
the corresponding reaction plane has to be taken into account. The experiments show that (e.g. in [3])
besides a second order anisotropy, triangular (3rd order) oscillations can also be observed. In our paper
we utilize the Buda-Lund model, the elliptical version of which [4] can describe the elliptic �ow (v2)
and the second order oscillations of the HBT radii [5]. In the extended Buda-Lund model presented
here the triangular �ow (v3) and third order HBT oscillations are also non-zero, in addition to the
elliptical version of the model.

2. Description of the geometry

Generally the source function assumed in a hydrodynamical model is

S(x, p)d4x =
g

(2π)3
pµd4Σµ(x)

B(x, p) + sq
with B(x, p) = exp

[
pµu

µ(x)− µ
T (x)

]
(1)

where g is the degeneracy factor, pµd4Σµ(x) is the Cooper-Frye factor, B(x, p) is the Boltzmann-
distribution and sq is the usual quantum statistic term. In the temperature pro�le and in the fugacity
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term there is the scale parameter s which ensures the asymmetry of the space-time distribution. The
inverse temperature pro�le and the fugacity term in the Buda-Lund model can be written as

1

T (x)
=

1

T0
(1 + a2s) and

µ(x)

T (x)
=
µ0
T0
− s. (2)

where a2 = T0−Ts
Ts

and T0 (Ts) means the temperature of the center (surface) of the expanding �reball at

the freeze-out. Let us write up s in cylindrical coordinate system instead of Cartesian with r2 = r2x+r2y
and cos(ϕ) = rx

r , and prescribe the azimuthal angle dependence. In the elliptic version of the model
the scale parameter can be written as

s =
r2

R2
(1 + ε2 cos(2ϕ)) +

r2z
Z2

(3)

where R is the radial and Z is the longitudinal scale, ε2 is the parameter controlling the 2nd order
asymmetry. The scale parameter s can be generalized to n-th order asymmetries as:

s =
r2

R2

(
1 +

∑
n

εn cos(n(ϕ−Ψn))

)
+
r2z
Z2

(4)

where Ψn is the angle of the n-th order reaction plane and εn is the parameter controlling the n-th
order azimuthal �ow anisotropy. The velocity �eld distribution uµ of the original Buda-Lund model
is also elliptically asymmetric. We can generalize this velocity �eld in the present framework with the
generalization of the velocity �eld potential Φ, de�ned as uµ = γ(1,∇Φ). This potential of the original
elliptical model with cylindrical coordinates is

Φ = Hr2(1 + χ2 cos(2ϕ)) +
Hz

2
r2z (5)

where χ2 is the parameter of the 2nd order asymmetry of the velocity �eld, H is the radial and Hz the
longitudinal Hubble-parameter. The n-th order generalized case can be expressed:

Φ = Hr2

(
1 +

∑
n

χn cos(n(ϕ−Ψn))

)
+Hzr

2
z (6)

where χn is the parameter of the n-th order reaction plane. From these potential the velocity �eld can
be derived. With this way of generalization of velocity �eld and space-time distribution in principle
any azimuthal asymmetry can be modeled. Let us note that there is a known solution of the relativistic
hydrodynamics with similarly generalized scale parameter in [6] however in that solution the velocity
�eld remains spherically symmetric.

3. Observables

Let us discuss here how the invariant transverse momentum distribution, the n-th order �ows and
the azimuthally sensitive HBT radii can be derived from the model. The asymmetries and their e�ects
on the observables have to be investigated versus the proper reaction plane. If we explore quantities
respect to the 2nd order reaction plane we have to average on the angle between the 2nd and 3rd

order reaction plane and vice versa. The invariant momentum distribution N1(p) can be calculated
by simply integrating on the space-time variable x in S(x, p) of Eq. (1). The �ow coe�cients can be
obtained from the Fourier-series of the invariant momentum distribution as vn(pt) = 〈cos(nα)〉N1(p)
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where α is the azimuthal angle of the emitted particle and the averaging is performed over N1(p). The
investigations show that the n-th order asymmetry coe�cients a�ect only the n-th order �ow, however
both of the spatial and the velocity �eld asymmetry have e�ects. For example ε2 and χ2 have e�ect
on the v2 but they don't a�ect v3. The e�ect of εn and χn on vn is illustrated in Fig. 1. There is an
entanglement of the spatial and the velocity �eld asymmetry so the values of these cannot be extracted
only from the measurements of the �ows.

The azimuthally sensitive HBT radii are important in the survey of the geometry and the size
of the source. Generally the two particle momentum correlation function can be expressed as the
Fourier-transform of the source function. Similarly to Ref. [8] the HBT radii can be calculated as

R2
out = 〈r2out〉 − 〈rout〉2 and R2

side = 〈r2side〉 − 〈rside〉2 (7)

where rside = r sin(ϕ−α), rout = r cos(ϕ−α)− βtt with βt = pt/
√
m2 + p2t of the given pair, ϕ is the

spatial angle and α is the momentum angle.
The averaging in 〈·〉 is understood as 〈f(x)〉 =

∫
f(x)S(x, p)d4x/

∫
S(x, p)d4x where in our case S(x, p)

is de�ned in Eq. (1). We can calculate the azimuthal angle dependence of the HBT radii from Eq. (7)
and parametrize them with the following functions:

Elliptical case: R2
out = R2

o,0 +R2
o,2 cos(2α) +R2

o,4 cos(4α) +R2
o,6 cos(6α) (8)

Triangular case: R2
out = R2

o,0 +R2
o,3 cos(3α) +R2

o,6 cos(6α) +R2
o,9 cos(9α) (9)

The higher order terms are caused by the rotation to the (out, side, long) system as it detailed in
Ref. [9]. These amplitudes are a�ected by both of the asymmetry parameters χ3, ε3 so there is also
a mixing in this case. These are illustrated in Fig. 2, 3. Yielding the value of the parameters from
only the azimuthally sensitive HBT radii measurements is not possible but combined with the �ow
measurements the value of the asymmetry coe�cients can be determined.

4. Summary and acknowledgements

The spatial density distribution and the velocity �eld can be generalized in the framework of the
Buda-Lund hydrodynamical model. The hadron momentum distributions and Bose-Einstein correla-
tions can be derived from the extended model, and the e�ects of the higher order azimuthal asym-
metries can be investigated. The density and �ow asymmetries (εn and χn, respectively) a�ect these
observables together (Fig. 1, 2, 3). Thus the value of these parameters can be disentangled from the
experiments if the �ows and the azimuthally sensitive HBT radii are measured simultaneously.
This work was partially supported by the OTKA NK 101438 grant.
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Figure 1. Elliptic �ow v2 at pt = 1000 MeV/c as function of χ2 and ε2 (left). Triangular �ow v3 at pt = 1000

MeV/c as function of χ3 and ε3 (right)

Figure 2. The parameter dependence of the second order oscillations of the R2
out,2/R

2
out,0 (left) and the

R2
side,2/R

2
side,0 (right) at pt = 300 MeV/c.

Figure 3. The parameter dependence of the third order oscillations of the R2
out,3/R

2
out,0 (left) and the

R2
side,3/R

2
side,0 (right) at pt = 300 MeV/c.
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