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Classical hydrodynamics � Basic equation

Continuity equation, Euler-equation, Energy-equation

We can calculate these equation from Boltzman-equation

Another way is the classical �eld theory

We use the Lagrangian picture or coordinates
→ We can use the point particle approach

The usual approach is the Euler coordinates. We have
transformation rule:

vL(r0, t) = vE(r(r0, t), t)

from this

dFL
dt

=
∂FE(r, t)

∂t
+ (v∇)FE(r, t)

Let introduce J Jacobi-matrix and its determinant:

Jab =
∂ua
∂rb

, J = detJ
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Classical hydrodynamics � Basic equation

so we can calculate:

ρd3u = ρ0d
3r → ρ =

ρ0(r)

J(r, t)

The Lagrangian is: L = T − V

T =

∫
d3u

1

2
ρ(r, t)v2 =

∫
d3rρ0(r)

v2

2

V =

∫
d3uρε =

∫
d3rρ0(r)ε

so the Lagrangian-density is Λ = ρ0

(
v2

2 − ε
)

The Euler�Lagrange-equation in this formalism:

∂Λ

∂ua
=

∂

∂t

∂Λ

∂ua,i
+

∂

∂rb

∂Λ

∂ua,b
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Classical hydrodynamics � Basic equation

Let see some thermodynamics!

On the trajectory, for the adiabatical process the entropy is
constant

The �rst principal of thermodynamics

dε =
pdρ

ρ2
+ Tds

so on the trajectory: dε = pdρ
ρ2

Calculate the derivates:

∂Λ

∂ua,b
=

∂Λ

∂Jab
= −ρ ∂

Jab
ε
(ρ0
J
, s0

)
=
ρ20
J2

∂ε

∂ρ

∂J

∂Jab
= pJJ−1ba

∂Λ

∂ua
= 0

∂Λ

∂ua,t
=
∂Λ

∂va
= ρ0va
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Classical hydrodynamics � Basic equation

Put everything together the equation of motion:

ρ0
∂va
∂t

= − ∂

∂rb
pJJ−1ba

Don't forget: this equation is calculated in Lagrange
picture. The EMT is:

Tij = ua,i
∂Λ

∂ua,j
− Λδij

T00 = e = va
∂Λ

∂va
− Λ = ρ0

(
v2

2
+ ε

)
T0a = [je]a = va

∂Λ

∂ub,a
= vbpJJ

−1
ab = pJ [J−1v]a

Ta0 = [p]a = ub,a
∂Λ

∂va

Tab = uc,a
∂Λ

∂uc,b
− Λδa,b = δa,b(pJ − Λ)
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Classical hydrodynamics � Basic equation

In the Euler picture, we get the well-known form:

Continuity-equation :
∂ρ

∂t
+∇ρv = 0

Euler-equation :
∂v

∂t
+ (v∇)v = −1

ρ
∇p

Energy-equation :
∂ε

∂t
+∇(vε) = −p

ρ
∇v

There are more unknown quantity than the number of the
equations

We have to give the Equation of State (EoS): ε = κp

In the most of the case κ is a constant:

cs =

√
∂p

∂ε
→ 1

c2s
=
ε

p
= κ
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Classical hydrodynamics � An example solution

Csörg® etal. arXiv:hep-ph/0108067v4

If we know all these, we can solve the equation theoritically

We interest in self-similar, ellipsoidal solution

n(t, r) =n0
V0
V
e−

s
2

v(t, r) =

(
Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz

)

T (t, r) =T0

(
V0
V

) 1
κ

Where s = − r2x
2X2 −

r2y
2Y 2 − r2z

2Z2 scale function

It is only true if: XẌ = Y Ÿ = ZZ̈ = T
m
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Importance of the relativistic case

The previous solution is classical, 3+1 dimensional,
ellipsoidal

Great, but we want to do relativistic hydrodynamics

Why? Later we will talk about some problem which are
have to be investigated with relativistic hydrodynamics

In the prevoius solution we saw there is an expanding
�reball

What if the velocity of the expanding is relativistic?

What if the energy density is relativistic?
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Relativistic hydrodynamics � Basic equation

We can use �eld theory in this section too!

If we get the follow Lagrangian density

Λ = −ρ · ε(ρ, s) +
ρν

2

(
1− gijuiuj

)
ρ, ε, s are in the co-moving system

From variational principals we can get the general
Euler-equation:

Dwui
dτ

= (wui);ju
j =

pi
ρ

where w = ε+p
ρ

From the Lagrangian-density we can get the canonical
EMT:

T ij = φα,i
∂Λ

∂φα,i
− gijΛ = ρwuiuj − gijp
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Relativistic hydrodynamics � Basic equation

The energy conservation and the equation of motion can be
calculated from the EMT with ∂νT

µν = 0

Energy equation :(ε+ p)∂νu
ν + uν∂νε = 0

Euler equation :(ε+ p)uν∂νu
µ = (gµν − uµuν)∂νp

Of course, we have to write the continuity equation and the
EoS:

Continuity equation :∂µ(nuµ) = 0

EoS :ε = κ(T )p
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Why we do this?

It is a good queation, why we care with relativistic
hydrodynamics?

Of course, it is nice, but it is not enough

The L&K and the B&H solution were motivated by the
heavy ion collisions

We can describe these reaction phenomenologically

There are just few exact solution, and we have no one
which is accelerating, 3+1 dimensonial and relativistic with
arbitrary geometric
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Heavy Ion Collision

Jet quenching � missing particle with large momentum
(Phys.Rev.Lett. 88.022301 (2002)).

The test against (Au+Au, d+Au)
(Phys. Rev. Lett. 91, 072303 (2003))

The �uid dynamics has right(v2 6= 0)
(Nucl. Phys. A 757, 184-283 (2005))

Scale behavior (quark degrees of freedom appear)
(Phys. Rev. Lett. 98, 162301 (2007))

Almost perfect �uid
(Phys. Rev. Lett. 98, 172301 (2007))

Very high initial temperature
(Phys. Rev. Lett. 104, 132301 (2010))

Fluid containts free gluon and quark

It exists for very long time: (τ0 ≈ 8fm/c ≈ 10−23s)

13 / 22



Some well-known solution

Landau�Khalatnikov-solution (L&K)

(S. Belen'kji and L. Landau, Il Nuovo Cimento (1955-1965)
3, 15 10.1007/BF02745507 (1956).)

1 1+1 dimesion
2 Implicit
3 Longitudinal
4 Can be applied to p+ � p+ collision

Hwa�Bjørken-solution (H&B)

(R. C. Hwa, Phys. Rev. D 10, 2260 (1974). ; J. D. Bjorken,
Phys. Rev. D 27, 140 (1983).)

1 1+1 dimension
2 Accelerationless
3 Explicit
4 Underestimating the initial energy density
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An example solution with more details

Csörg®, Csernai, Hama et al., Heavy Ion Phys. A21, 73 (2004), nucl-th/0306004

The velocity�eld is Hubble-type:

uµ = γ
(

1, ẊXx,
Ẏ
Y y,

Ż
Z z
)

= xµ

τ

Ẋ, Ẏ , Ż =const.→ accelerationless

The thermodynamical quantities are:

n = n0
(
τ0
τ

)3
ν(s)

T = T0
(
τ0
τ

)3/κ 1
ν(s)

p = p0
(
τ0
τ

)3+3/κ

n a barion-density, T the temperature, p the pressure, κ
compressibility and τ the proper time.

ν(s) = e−bs/2 arbitrary function

s = x2

X2(t)
+ y2

Y 2(t)
+ z2

Z2(t)
the scale parameter.
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Realistic EoS � What's wrong?

κ = const. is not realistic: Katz et al. JHEP 1011, 077
(2010) [arXiv:1007.2580]

In the interesting region the κ 6= const.

Assume the κ = κ(T )

If we can solve the basic equation of hydrodynamics with
this EoS may we can describe this region
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Realistic EoS � Conserved charge

Csanád, Nagy, Lökös, EPJ A (2012) 48:173

κ = κ(T )→ ε = κ(T )p generalization

The velocity �eld is Hubble-type uµ = xµ

τ and the volume is
V = τ3

The conserved charge is n = n0 ·
(
V0
V

)
If we put these in the energy equation a temperature
equation can be calculated:

uµ
[
∂µV

V
+
d(κ(T )T )

dT

∂µT

T

]
= 0

τ30
τ3

= exp
∫ T
T0

d(κ(T ′)T ′)
dT ′

∂µT ′

T ′ dT ′
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Realistic EoS � Non-conserved charge

Csanád, Nagy, Lökös, EPJ A (2012) 48:173

If there are no any conserved charge we can use some
thermodynamical equation:
ε = κ(T )p, ε = Ts− p→ dε = Tds

If we use ε+ p = Ts, dε = Tds relations the
entropy-conservation can be yield in a continuity equation

If we use ε+ p = Ts we can calculate a new solution
τ30
τ3

= exp
∫ T
T0

(
κ
T ′ + 1

κ+1
κ(T ′)
dT ′

)
dT ′

If we assume κ = κ(p)→
τ30
τ3

= exp
∫ p
p0

(
κ

(κ+1)p + 1
κ+1

dκ
dp

)
dp

This solution can be transformed into the prevoius solution
if κ = κ(p(T ))
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lQCD results

Borsányi, Fodor, Katz et al. JHEP 1011, 077 (2010), arXiv:1007.2580

Now, we have to get a κ(T ) function

Fortunatly: lQCD parametrization is exist

From the parametrization of the trace anomaly, I(T )/T 4

we can get the pressure: p(T )
T 4 =

∫ T
0

dT
T
I(T )
T 4

I = ε− 3p→ κ = I
p + 3
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Case of the conserved charge

With conserved charge we get an unrealistic result:
dκ
dT < 0→ ∂νu

ν ≤ 0
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Case of the non-conserved charge

The previous problem will not appear if there is no
conserved charge

Assume τinit = 1.5fm, τf = 8fm and the T0 = 170MeV
(earlier hydro�ts yields these parameters)

Initial energy is a little higher than early calculation
predicted it: Einit = 550MeV

21 / 22



Thank you for your attention!
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