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@ Relativistic hydrodynamics

e Conservation law, basic equation

o Some archaical (so called "well-known") solution from the

past

o An example solution with more details
© More realistic EoS

o What is the problem with x =const. ?

o What should or could we do?

e Some 1QCD results and their use
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Classical hydrodynamics — Basic equation

o
o
o
"]

Continuity equation, Euler-equation, Energy-equation
We can calculate these equation from Boltzman-equation
Another way is the classical field theory

We use the Lagrangian picture or coordinates

— We can use the point particle approach

The usual approach is the Euler coordinates. We have
transformation rule:

vr(ro,t) = ve(r(ro,t),t)

from this
dFy, OFg (I‘, t)
= F t
dt ot T (VVIFe(r?)
Let introduce J Jacobi-matrix and its determinant:

Jop = —= . J =det
b 877, ¢
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Classical hydrodynamics — Basic equation

@ so we can calculate:

pd3u = pod®r — p=

o The Lagrangian is: L=T -V
2

1
T:/d3u2p(r, t)v? = /dgr,oo(r)v2

Vv :/dgupe: /d?’rpg(r)e

@ so the Lagrangian-density is A = pg (% — 6)
o The Euler-Lagrange-equation in this formalism:

OA 0 0A n 0 oA
Oug Ot Oug; Oy Oug




Classical hydrodynamics — Basic equation

o Let see some thermodynamics!

@ On the trajectory, for the adiabatical process the entropy is
constant
@ The first principal of thermodynamics

pd

de = 2L 4 Tds
P>

so on the trajectory: de = 7;% Calculate the derivates:

DA 0N D (po N\ _ pRded]
Oy 0dyy ' dm < J ’30) = P opody P
oA

Oug =0

oA OA

= —_— = OQ_]
Ougt  Ovg Pova
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Classical hydrodynamics — Basic equation

o Put everything together the equation of motion:
a'Ua 6 1
=——pJJ,
fo ot arbp b
@ Don’t forget: this equation is calculated in Lagrange
picture. The EMT is:

oA

Tij = Ug7n— — Ady;
J 8ua’j Y
OA v?
Toa = ljela = Y ne wpJ I = I3 Va
oA
Too = [p]a = Ub,aaT

OA
Tap = teagy, = Aap = baplndr &y o



Classical hydrodynamics — Basic equation

o In the Euler picture, we get the well-known form:

0
Continuity-equation :a—lt) + Vpv=0

ov 1
Euler- ti o= = ——
uler-equation . —l—(VC)V Cp

3}
Energy-equation :a—z + V(ve) = Loy
p

@ There are more unknown quantity than the number of the
equations

e We have to give the Equation of State (EoS): € = kp
o In the most of the case x is a constant:

(3p_>1 €
Cs=\= > S5=-=k
° de 2

p
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Classical hydrodynamics — An example solution

Csorgd etal. arXiv:hep-ph/0108067v4

o If we know all these, we can solve the equation theoritically

o We interest in self-similar, ellipsoidal solution

n(t,r) :noge*%

X Y Z
V(t,I‘) X'rxv Yryy Z

I'(t,r) =To (1‘?)

2) 2
_ Ty _y_ T2 ;
o Where s = 39T — 332 — 322 scale function

o Itisonly trueif: XX =YY =22=2L



Importance of the relativistic case

@ The previous solution is classical, 3+1 dimensional,
ellipsoidal

Great, but we want to do relativistic hydrodynamics

Why? Later we will talk about some problem which are
have to be investigated with relativistic hydrodynamics

In the prevoius solution we saw there is an expanding

fireball

What if the velocity of the expanding is relativistic?

What if the energy density is relativistic?



Relativistic hydrodynamics — Basic equation

e o

e ©

e o

We can use field theory in this section too!
If we get the follow Lagrangian density

A=—p-e(p,s)+ % (1 —gijuiuj)

p, €, s are in the co-moving system
From variational principals we can get the general
Euler-equation:

Dwuy;

dr

= (wui);juj =2

where w = <2

From the Lagrangian-density we can get the canonical
EMT:

OA

Tij = ¢a,i8¢ )

— g7 A = pwu'e! — gp
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Relativistic hydrodynamics — Basic equation

@ The energy conservation and the equation of motion can be
calculated from the EMT with 9,T*" = 0

Energy equation :(e + p)d,u” + u”d,e = 0
Euler equation :(e + p)u”d,u” = (¢"* — u*u")0,p

o Of course, we have to write the continuity equation and the
EoS:

Continuity equation :0,(nu/) = 0
EoS :e = x(T')p



Why we do this?

o It is a good queation, why we care with relativistic
hydrodynamics?
o Of course, it is nice, but it is not enough

o The L&K and the B&H solution were motivated by the
heavy ion collisions

@ We can describe these reaction phenomenologically

o There are just few exact solution, and we have no one
which is accelerating, 3-+1 dimensonial and relativistic with
arbitrary geometric



Heavy Ion Collision

o Jet quenching — missing particle with large momentum
(Phys.Rev.Lett. 88.022301 (2002)).

The test against (Au+Au, d+Au)

(Phys. Rev. Lett. 91, 072303 (2003))

The fluid dynamics has right(vy # 0)

(Nucl. Phys. A 757, 184-283 (2005))

Scale behavior (quark degrees of freedom appear)
(Phys. Rev. Lett. 98, 162301 (2007))

Almost perfect fluid

(Phys. Rev. Lett. 98, 172301 (2007))

(]

(]

Very high initial temperature
(Phys. Rev. Lett. 104, 132301 (2010))

Fluid containts free gluon and quark

(]

(]

It exists for very long time: (75 ~ 8fm/c ~ 10~235)



Some well-known solution

e Landau-Khalatnikov-solution (L&K)
(S. Belen’kji and L. Landau, Il Nuovo Cimento (1955-1965)
3, 15 10.1007/BF02745507 (1956).)
© 1-+1 dimesion
@Q Implicit
© Longitudinal
@ Can be applied to p™ — p™ collision
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e HwaBjorken-solution (H&B)

(R. C. Hwa, Phys. Rev. D 10, 2260 (1974). ; J. D. Bjorken,
Phys. Rev. D 27, 140 (1983).)

@ 1-+1 dimension

© Accelerationless

© Explicit

© Underestimating the initial energy density




An example solution with more details

Csorgs, Csernai, Hama et al., Heavy Ton Phys. A21, 73 (2004), nucl-th/0306004

o The velocityfield is Hubble-type:

o X,Y,Z =const.— accelerationless

o The thermodynamical quantities are:
o n=mng (2 )3u(s)
o T = TO(TO)3/H 1

( )3+3/:(s)

® P =Do
@ n a barion-density, T the temperature, p the pressure, x
compressibility and 7 the proper time.

—bs/2

e v(s) = arbitrary function

(]

s§= ( y T Y2(t) + ZQ( ) the scale parameter.



Realistic EoS — What’s wrong?

e Kk = const. is not realistic: Katz et al. JHEP 1011, 077
(2010) [arXiv:1007.2580]
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o In the interesting region the x # const.
o Assume the k = (T

o If we can solve the basic equation of hydrodynamics with
this EoS may we can describe this region



Realistic EoS — Conserved charge

Csanad, Nagy, Lokss, EPJ A (2012) 48:173

o k= k(T) — € = k(T)p generalization
@ The velocity field is Hubble-type u* = % and the volume is
V=13

o The conserved charge is n = ng - (“/}))

o If we put these in the energy equation a temperature
equation can be calculated:

0, d(r(1)T) 9T

z 0
YTy daT T



Realistic EoS — Non-conserved charge

Csanad, Nagy, Lokss, EPJ A (2012) 48:173

o If there are no any conserved charge we can use some
thermodynamical equation:
e=kr(T)p,e=Ts—p— de=Tds
o If we use e + p = T's,de = T'ds relations the
entropy-conservation can be yield in a continuity equation
o If we use e +p = T's we can calculate a new solution
0o T 1 KT
= =exp [, (% + mﬁch')) dT’
o If we assume k = k(p) —
o o_ P 1d
T% = 29 Do ((n—fl)p + mﬁ) dp
o This solution can be transformed into the prevoius solution
if & = r(p(T)




1QCD results

Borsanyi, Fodor, Katz et al. JHEP 1011, 077 (2010), arXiv:1007.2580

e Now, we have to get a k(T function
o Fortunatly: 1QCD parametrization is exist
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e From the parametrization of the trace anomaly, I(T)/T*
we can get the pressure: = g) = OT dTTIg)
° I:6—3p—>1€:£+3




Case of the conserved charge

o With conserved charge we get an unrealistic result:
ds <0 - 9u” <0

7 5 Ty=170MeV
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o The validity is limited, if Tp = 173 — 225MeV
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Case of the non-conserved charge

@ The previous problem will not appear if there is no
conserved charge

£ A 1QCD EoS, Ty=170 MeV
= \ 1QCD E0S, Tp=200 MeV =-=-=x-

. . .
0.2 0.4 0.6 0.8 1
74

o Assume Tip;s = 1.5fm, 74 = 8fm and the Ty = 170MeV
(earlier hydrofits yields these parameters)

o Initial energy is a little higher than early calculation
predicted it: E;p;; = 550M eV

N
N
N



Thank you for your attention!



