Classical and relativistical hydrodynamics

Lökös Sándor

Theoretical Physics Seminar, 2013. november 6.

Outline

(1) Classical hydrodynamics

- Conservation law, basic equation
- An example solution
- When the relativistic effects are interesting or important

Outline

(1) Classical hydrodynamics

- Conservation law, basic equation
- An example solution
- When the relativistic effects are interesting or important
(2) Relativistic hydrodynamics
- Conservation law, basic equation
- Some archaical (so called "well-known") solution from the past
- An example solution with more details

Outline

(1) Classical hydrodynamics

- Conservation law, basic equation
- An example solution
- When the relativistic effects are interesting or important
(2) Relativistic hydrodynamics
- Conservation law, basic equation
- Some archaical (so called "well-known") solution from the past
- An example solution with more details
(3) More realistic EoS
- What is the problem with $\kappa=$ const. ?
- What should or could we do?
- Some lQCD results and their use

Classical hydrodynamics - Basic equation

- Continuity equation, Euler-equation, Energy-equation
- We can calculate these equation from Boltzman-equation
- Another way is the classical field theory
- We use the Lagrangian picture or coordinates
\rightarrow We can use the point particle approach
- The usual approach is the Euler coordinates. We have transformation rule:

$$
v_{L}\left(\mathbf{r}_{0}, t\right)=v_{E}\left(\mathbf{r}\left(\mathbf{r}_{0}, t\right), t\right)
$$

from this

$$
\frac{d F_{L}}{d t}=\frac{\partial \mathbf{F}_{E}(\mathbf{r}, t)}{\partial t}+(\mathbf{v} \nabla) \mathbf{F}_{E}(\mathbf{r}, t)
$$

Let introduce J Jacobi-matrix and its determinant:

$$
J_{a b}=\frac{\partial u_{a}}{\partial r_{b}}, J=\operatorname{det} \mathbf{J}
$$

Classical hydrodynamics - Basic equation

- so we can calculate:

$$
\rho d^{3} u=\rho_{0} d^{3} r \rightarrow \rho=\frac{\rho_{0}(\mathbf{r})}{J(\mathbf{r}, t)}
$$

- The Lagrangian is: $L=T-V$

$$
\begin{aligned}
T & =\int d^{3} u \frac{1}{2} \rho(\mathbf{r}, t) v^{2}=\int d^{3} r \rho_{0}(r) \frac{v^{2}}{2} \\
V & =\int d^{3} u \rho \epsilon=\int d^{3} r \rho_{0}(r) \epsilon
\end{aligned}
$$

- so the Lagrangian-density is $\Lambda=\rho_{0}\left(\frac{v^{2}}{2}-\epsilon\right)$
- The Euler-Lagrange-equation in this formalism:

$$
\frac{\partial \Lambda}{\partial u_{a}}=\frac{\partial}{\partial t} \frac{\partial \Lambda}{\partial u_{a, i}}+\frac{\partial}{\partial r_{b}} \frac{\partial \Lambda}{\partial u_{a, b}}
$$

Classical hydrodynamics - Basic equation

- Let see some thermodynamics!
- On the trajectory, for the adiabatical process the entropy is constant
- The first principal of thermodynamics

$$
d \epsilon=\frac{p d \rho}{\rho^{2}}+T d s
$$

so on the trajectory: $d \epsilon=\frac{p d \rho}{\rho^{2}}$ Calculate the derivates:

$$
\begin{aligned}
\frac{\partial \Lambda}{\partial u_{a, b}} & =\frac{\partial \Lambda}{\partial J_{a b}}=-\rho \frac{\partial}{J_{a b}} \epsilon\left(\frac{\rho_{0}}{J}, s_{0}\right)=\frac{\rho_{0}^{2}}{J^{2}} \frac{\partial \epsilon}{\partial \rho} \frac{\partial J}{\partial J_{a b}}=p J J_{b a}^{-1} \\
\frac{\partial \Lambda}{\partial u_{a}} & =0 \\
\frac{\partial \Lambda}{\partial u_{a, t}} & =\frac{\partial \Lambda}{\partial v_{a}}=\rho_{0} v_{a}
\end{aligned}
$$

Classical hydrodynamics - Basic equation

- Put everything together the equation of motion:

$$
\rho_{0} \frac{\partial v_{a}}{\partial t}=-\frac{\partial}{\partial r_{b}} p J J_{b a}^{-1}
$$

- Don't forget: this equation is calculated in Lagrange picture. The EMT is:

$$
\begin{aligned}
T_{i j} & =u_{a, i} \frac{\partial \Lambda}{\partial u_{a, j}}-\Lambda \delta_{i j} \\
T_{00} & =e=v_{a} \frac{\partial \Lambda}{\partial v_{a}}-\Lambda=\rho_{0}\left(\frac{v^{2}}{2}+\epsilon\right) \\
T_{0 a} & =\left[\mathbf{j}_{e}\right]_{a}=v_{a} \frac{\partial \Lambda}{\partial u_{b, a}}=v_{b} p J J_{a b}^{-1}=p J\left[\mathbf{J}^{-1} \mathbf{v}\right]_{a} \\
T_{a 0} & =[\mathbf{p}]_{a}=u_{b, a} \frac{\partial \Lambda}{\partial v_{a}} \\
T_{a b} & =u_{c, a} \frac{\partial \Lambda}{\partial u_{c, b}}-\Lambda \delta_{a, b}=\delta_{a, b}(p J-\Lambda)
\end{aligned}
$$

Classical hydrodynamics - Basic equation

- In the Euler picture, we get the well-known form:

$$
\begin{aligned}
& \text { Continuity-equation : } \begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \rho \mathbf{v} & =0 \\
\text { Euler-equation : } \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \nabla) \mathbf{v} & =-\frac{1}{\rho} \nabla p \\
\text { Energy-equation : }: \frac{\partial \epsilon}{\partial t}+\nabla(\mathbf{v} \epsilon) & =-\frac{p}{\rho} \nabla \mathbf{v}
\end{aligned}
\end{aligned}
$$

- There are more unknown quantity than the number of the equations
- We have to give the Equation of State (EoS): $\epsilon=\kappa p$
- In the most of the case κ is a constant:

$$
c_{s}=\sqrt{\frac{\partial p}{\partial \epsilon}} \rightarrow \frac{1}{c_{s}^{2}}=\frac{\epsilon}{p}=\kappa
$$

Classical hydrodynamics - An example solution

Csörgő etal. arXiv:hep-ph/0108067v4

- If we know all these, we can solve the equation theoritically
- We interest in self-similar, ellipsoidal solution

$$
\begin{aligned}
n(t, \mathbf{r}) & =n_{0} \frac{V_{0}}{V} e^{-\frac{s}{2}} \\
\mathbf{v}(t, \mathbf{r}) & =\left(\frac{\dot{X}}{X} r_{x}, \frac{\dot{Y}}{Y} r_{y}, \frac{\dot{Z}}{Z} r_{z}\right) \\
T(t, \mathbf{r}) & =T_{0}\left(\frac{V_{0}}{V}\right)^{\frac{1}{\kappa}}
\end{aligned}
$$

- Where $s=-\frac{r_{x}^{2}}{2 X^{2}}-\frac{r_{y}^{2}}{2 Y^{2}}-\frac{r_{z}^{2}}{2 Z^{2}}$ scale function
- It is only true if: $X \ddot{X}=Y \ddot{Y}=Z \ddot{Z}=\frac{T}{m}$

Importance of the relativistic case

- The previous solution is classical, $3+1$ dimensional, ellipsoidal
- Great, but we want to do relativistic hydrodynamics
- Why? Later we will talk about some problem which are have to be investigated with relativistic hydrodynamics
- In the prevoius solution we saw there is an expanding fireball
- What if the velocity of the expanding is relativistic?
- What if the energy density is relativistic?

Relativistic hydrodynamics - Basic equation

- We can use field theory in this section too!
- If we get the follow Lagrangian density

$$
\Lambda=-\rho \cdot \epsilon(\rho, s)+\frac{\rho \nu}{2}\left(1-g^{i j} u^{i} u^{j}\right)
$$

- ρ, ϵ, s are in the co-moving system
- From variational principals we can get the general Euler-equation:

$$
\frac{D w u_{i}}{d \tau}=\left(w u_{i}\right)_{; j} u^{j}=\frac{p_{i}}{\rho}
$$

- where $w=\frac{\epsilon+p}{\rho}$
- From the Lagrangian-density we can get the canonical EMT:

$$
T^{i j}=\phi_{\alpha, i} \frac{\partial \Lambda}{\partial \phi_{\alpha, i}}-g^{i j} \Lambda=\rho w u^{i} u^{j}-g^{i j} p
$$

Relativistic hydrodynamics - Basic equation

- The energy conservation and the equation of motion can be calculated from the EMT with $\partial_{\nu} T^{\mu \nu}=0$

Energy equation : $(\epsilon+p) \partial_{\nu} u^{\nu}+u^{\nu} \partial_{\nu} \epsilon=0$
Euler equation : $(\epsilon+p) u^{\nu} \partial_{\nu} u^{\mu}=\left(g^{\mu \nu}-u^{\mu} u^{\nu}\right) \partial_{\nu} p$

- Of course, we have to write the continuity equation and the EoS:

Continuity equation : $\partial_{\mu}\left(n u^{\mu}\right)=0$

$$
\operatorname{EoS}: \epsilon=\kappa(T) p
$$

Why we do this?

- It is a good queation, why we care with relativistic hydrodynamics?
- Of course, it is nice, but it is not enough
- The $\mathrm{L} \& \mathrm{~K}$ and the $\mathrm{B} \& \mathrm{H}$ solution were motivated by the heavy ion collisions
- We can describe these reaction phenomenologically
- There are just few exact solution, and we have no one which is accelerating, $3+1$ dimensonial and relativistic with arbitrary geometric

Heavy Ion Collision

- Jet quenching - missing particle with large momentum (Phys.Rev.Lett. 88.022301 (2002)).
- The test against $(\mathrm{Au}+\mathrm{Au}, \mathrm{d}+\mathrm{Au})$ (Phys. Rev. Lett. 91, 072303 (2003))
- The fluid dynamics has $\operatorname{right}\left(v_{2} \neq 0\right)$
(Nucl. Phys. A 757, 184-283 (2005))
- Scale behavior (quark degrees of freedom appear) (Phys. Rev. Lett. 98, 162301 (2007))
- Almost perfect fluid (Phys. Rev. Lett. 98, 172301 (2007))
- Very high initial temperature (Phys. Rev. Lett. 104, 132301 (2010))
- Fluid containts free gluon and quark
- It exists for very long time: $\left(\tau_{0} \approx 8 \mathrm{fm} / \mathrm{c} \approx 10^{-23} s\right)$

Some well-known solution

- Landau-Khalatnikov-solution (L\&K)
(S. Belen'kji and L. Landau, Il Nuovo Cimento (1955-1965) 3, 15 10.1007/BF02745507 (1956).)
(c) $1+1$ dimesion
(2) Implicit
(3) Longitudinal
(1) Can be applied to $p^{+}-p^{+}$collision

Some well-known solution

- Landau-Khalatnikov-solution (L\&K)
(S. Belen'kji and L. Landau, Il Nuovo Cimento (1955-1965) 3, 15 10.1007/BF02745507 (1956).)
(c) $1+1$ dimesion
(2) Implicit
(3) Longitudinal
(1) Can be applied to $p^{+}-p^{+}$collision
- Hwa-Bjørken-solution (H\&B)
(R. C. Hwa, Phys. Rev. D 10, 2260 (1974). ; J. D. Bjorken, Phys. Rev. D 27, 140 (1983).)
(1) $1+1$ dimension
(2) Accelerationless
(3) Explicit
(1) Underestimating the initial energy density

An example solution with more details

Csörgő, Csernai, Hama et al., Heavy Ion Phys. A21, 73 (2004), nucl-th/0306004

- The velocityfield is Hubble-type:

$$
u^{\mu}=\gamma\left(1, \frac{\dot{X}}{X} x, \frac{\dot{Y}}{Y} y, \frac{\dot{Z}}{Z} z\right)=\frac{x^{\mu}}{\tau}
$$

- $\dot{X}, \dot{Y}, \dot{Z}=$ const. \rightarrow accelerationless
- The thermodynamical quantities are:
- $n=n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3} \nu(s)$
- $T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3 / \kappa} \frac{1}{\nu(s)}$
- $p=p_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3+3 / \kappa}$
- n a barion-density, T the temperature, p the pressure, κ compressibility and τ the proper time.
- $\nu(s)=e^{-b s / 2}$ arbitrary function
- $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$ the scale parameter.

Realistic EoS - What's wrong?

- $\kappa=$ const. is not realistic: Katz et al. JHEP 1011, 077 (2010) [arXiv:1007.2580]

- In the interesting region the $\kappa \neq$ const.
- Assume the $\kappa=\kappa(T)$
- If we can solve the basic equation of hydrodynamics with this EoS may we can describe this region

Realistic EoS - Conserved charge

Csanád, Nagy, Lökös, EPJ A (2012) 48:173

- $\kappa=\kappa(T) \rightarrow \epsilon=\kappa(T) p$ generalization
- The velocity field is Hubble-type $u^{\mu}=\frac{x^{\mu}}{\tau}$ and the volume is $V=\tau^{3}$
- The conserved charge is $n=n_{0} \cdot\left(\frac{V_{0}}{V}\right)$
- If we put these in the energy equation a temperature equation can be calculated:

$$
u^{\mu}\left[\frac{\partial_{\mu} V}{V}+\frac{d(\kappa(T) T)}{d T} \frac{\partial_{\mu} T}{T}\right]=0
$$

- $\frac{\tau_{0}^{3}}{\tau^{3}}=\exp \int_{T_{0}}^{T} \frac{d\left(\kappa\left(T^{\prime}\right) T^{\prime}\right)}{d T^{\prime}} \frac{\partial_{\mu} T^{\prime}}{T^{\prime}} d T^{\prime}$

Realistic EoS - Non-conserved charge

Csanád, Nagy, Lökös, EPJ A (2012) 48:173

- If there are no any conserved charge we can use some thermodynamical equation:
$\epsilon=\kappa(T) p, \epsilon=T s-p \rightarrow d \epsilon=T d s$
- If we use $\epsilon+p=T s, d \epsilon=T d s$ relations the entropy-conservation can be yield in a continuity equation
- If we use $\epsilon+p=T s$ we can calculate a new solution

$$
\frac{\tau_{0}^{3}}{\tau^{3}}=\exp \int_{T_{0}}^{T}\left(\frac{\kappa}{T^{\prime}}+\frac{1}{\kappa+1} \frac{\kappa\left(T^{\prime}\right)}{d T^{\prime}}\right) d T^{\prime}
$$

- If we assume $\kappa=\kappa(p) \rightarrow$
$\frac{\tau_{0}^{3}}{\tau^{3}}=\exp \int_{p_{0}}^{p}\left(\frac{\kappa}{(\kappa+1) p}+\frac{1}{\kappa+1} \frac{d \kappa}{d p}\right) d p$
- This solution can be transformed into the prevoius solution if $\kappa=\kappa(p(T))$

lQCD results

Borsányi, Fodor, Katz et al. JHEP 1011, 077 (2010), arXiv:1007.2580

- Now, we have to get a $\kappa(T)$ function
- Fortunatly: lQCD parametrization is exist

- From the parametrization of the trace anomaly, $I(T) / T^{4}$ we can get the pressure: $\frac{p(T)}{T^{4}}=\int_{0}^{T} \frac{d T}{T} \frac{I(T)}{T^{4}}$
- $I=\epsilon-3 p \rightarrow \kappa=\frac{I}{p}+3$

Case of the conserved charge

- With conserved charge we get an unrealistic result: $\frac{d \kappa}{d T}<0 \rightarrow \partial_{\nu} u^{\nu} \leq 0$

- The validity is limited, if $T_{0}=173-225 \mathrm{MeV}$

Case of the non-conserved charge

- The previous problem will not appear if there is no conserved charge

- Assume $\tau_{\text {init }}=1.5 \mathrm{fm}, \tau_{f}=8 \mathrm{fm}$ and the $T_{0}=170 \mathrm{MeV}$ (earlier hydrofits yields these parameters)
- Initial energy is a little higher than early calculation predicted it: $E_{\text {init }}=550 \mathrm{MeV}$

Thank you for your attention!

