Állapotegyenlet

Magreakciók alacsony energiától nagy energiáig

Lökös Sándor

Házi védés, 2013. október 22.

イロン イロン イヨン イヨン ヨー クへで

Áttekintés

- 1. Tágulás, fragmentáció és az entrópia-rejtély
 - Összenyomás és tágulás
 - Kvantumstatisztikai modell és a fragmentáció
 - Termális fragmentálódás
 - Könnyű fragmentumok és az entrópia-rejtély

Áttekintés

- 1. Tágulás, fragmentáció és az entrópia-rejtély
 - Összenyomás és tágulás
 - Kvantumstatisztikai modell és a fragmentáció
 - Termális fragmentálódás
 - Könnyű fragmentumok és az entrópia-rejtély
- 2. Pion hozam és a nukleáris energia

Áttekintés

- 1. Tágulás, fragmentáció és az entrópia-rejtély
 - Összenyomás és tágulás
 - Kvantumstatisztikai modell és a fragmentáció
 - Termális fragmentálódás
 - Könnyű fragmentumok és az entrópia-rejtély
- 2. Pion hozam és a nukleáris energia
- 3. Kollektív tágulás
 - Spektrum
 - Nagy multiplicitású adatok
 - Event by event analízis
 - A reakciótermékek azimutális felbontása
 - Makroszkópikus analízis
 - Mikroszkópikus analízis

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

1. rész – Összenyomás és tágulás

- Történetileg az előbb bemutatott, hidrodinamikai megközelítést használták
- Most egy intuitívabb modell látunk majd, termodinamikai fogalmakkal
- Motiváció: az összenyomásnál a makroszkópikus mennyiségekre vagyunk kíváncsiak
- A hidrodinamikai modellek és a VUU, mint input igényli az ÁE-t, ami a legtöbbször nem könnyű

1. rész – Összenyomás és tágulás

- A hidrodinamikai koncepciók a következőkre épülnek:
 - Az ütköző nagyenergiás magok átfedő része megáll és kialakul egy erősen nem-lineáris lökéshullám
 - Magas hőmérséklet, nyomás és sűrűség keletkezik
 - Elhagyva ezt a régiót a hőmérséklet esik egy kvázi-adiabatikus hidrodinamikai tágulásban
 - Az entrópia közel konstans marad a legnagyobb sűrűség elérésekor
 - A tágulás hidrodinamikai leírása érvényét veszti a fragmentációval

- Miért fontosak a fragmentumok? Az egyetlen informátoraink a kezdeti állapotról (bonyolult kérdés)
- Kvantumstatisztikai megközelítés szeresszeres

Allapotegyenlet Magreakció alacsony energiától nagy energiáig

1. rész – Kvantumstatisztikai modell és a fragmentáció

- Kis és közepes tömegű fragmentumok $(\pi, K^{0/\pm}, p, \bar{p})$
- Két fő kérdés:
 - Hol keletkeznek a legtöbben? (Térbeli eloszlásfüggvény)
 - Milyen impulzussal keletkeznek? (Impulzustérbeli eloszlásfüggvény)
- Feltesszük, hogy a folyadék barionszáma és az energia/részecske aránya megmarad
- Barionszám és töltés megmaradás:

$$\bar{Z} = \sum_{i=1}^{N} n_i(Z_i, N_i) Z_i$$
$$\bar{N} = \sum_{i=1}^{N} n_i(Z_i, N_i) N_i$$

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

Lökös Sándor

< ロ > < 回 > < 三 > < 三 > < 三 > のへで

1. rész – Kvantumstatisztikai modell és a fragmentáció

- Egyensúly van a V_{ext} térfogatban T hőmérsékleten
- Minden részecske szabadon mozog a V = V_{ext} - \sum_i n_i V_i térfogatban
- Fermionokra érvényes

$$\left(\frac{\hbar}{m_i k T}\right)^3 \frac{N_i}{g_i V} = \sqrt{\frac{2}{\pi}} F_{FD}(\nu_i)$$

ahol
$$u_i = \mu_i/kT$$
 és $F_{FD}(\nu) = \int_0^\infty dx rac{\sqrt{x}}{exp(x-\nu)-1}$

Ez utóbbi kiértékelését táblázatok is segítik

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

1. rész – Kvantumstatisztikai modell és a fragmentáció

Bozonokra érvényes

$$N_{i} = \frac{1}{exp(\alpha_{i}) - 1} + \frac{g_{i}V}{\left(\frac{\hbar}{m_{i}kT}\right)^{3}}F_{BE}(\alpha_{i})$$

ahol
$$\alpha_i = \mu_i/kT$$
 és $F_{BE}(\alpha) = \sum_{n=1}^{\infty} \frac{exp(-n\alpha)}{n^{3/2}}$

Az egyensúly miatt fenn kell álljon a

$$\mu_i = Z_i \mu_p + N_i \mu_n + E_i$$

ahol $E_i = Z_i m_p c^2 + N_i m_n c^2 m_i c^2$ a kötési energia a (Z_i, N_i) rendszerben

Allapotegyenlet Magreakció alacsony energiától nagy energiáig

Lökös Sándor

<ロ> <問> <言> <言> <言> <言> <こ> のへの

1. rész – Termális fragmentálódás

- A nukleon belsejében lévő folyadékcellák termális impulzuseloszlását a Fermi eloszlás írja le
- Minden fragmentumot a laborrendszerbe transzformálunk β_j boosttal
- A megfigyelt részecske impulzusvektora (p) függ a megfigyelt energiától és két szögtől

$$\mathbf{p} = \sqrt{(W^2 - m^2)} = (sin heta cos\phi, sin heta sin\phi, cos\phi)$$

ahol W = E + m

 Így ki lehet számolni a fragmentumok spektrumát és szögeloszlását ^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

1. rész – Könnyű fragmentumok és az entrópia-rejtély

- Emlékezzünk: az entrópiának volt egy konstans szakasza
- Ez enged következtetni az anyagra
- A kísérleti adatok nem egyeznek jól!

Megoldás: be kell tenni a neutron protonba bomlását is

Még jobb, ha a nem-stabil nukleonokat vesszük:

$$A^*
ightarrow (A-1) + p$$

Ez nagyon fontos, ha E_{lab} < 400 MeV</p>

Allapotegyenlet Magreakciól alacsony energiától nagy energiáig

1. rész – Könnyű fragmentumok és az entrópia-rejtély

- Az entrópiafüggést nem lehet egyszerűen megadni, de numerikus számolásokból lehet valamit mondani stabil és nem-stabil részecskék esetén is
- Azonban a protonba bomlás erősen függ a multiplicitástól
- Ez periferikus ütközéseknél, melyek dominálják a spektrumot, kicsi
- A kísérletek azt mutatják, a termodinamikai megközelítés csak nagy multiplicitás esetén alkalmazható

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

2. rész – Pion hozam és a nukleáris energia

- A nukleáris folyadékkép használható arra, hogy megjósoljuk a pion hozamot
- A hozam "ÁE függését"
- Az adatok csak "kemény" összenyomás mellett magyarázhatók, azonban a pillanatszerű kifagyás feltevése a nagy sűrűségű állapotban a pionhozam túlbecsléséhez vezethet
- Mikroszkópikus szinten a VUU elmélethez fordulunk
- a Különböző izospinű pionok a Δ rezonancia bomlásából származnak az elemi nukleon-nukleon ütközésekből
- A VUU-ba be kell tenni a Pauli-elvet és az összenyomásnak ellentartó energiát.

^{Állapotegyenlet} Magreakció alacsony energiától nagy energiáig

3. rész – Spektrum

- A hidrodinamikai modellből lehet számolni egy kifagyás utáni spektrumot
- Részleteket lehet megtudni a reakciókról
- Kis impakt paraméternél a számolások nem mutatnak oldalirányú tágulást, míg nagynál igen
- Kísérleti adatok ezt alátámasztják

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

3. rész – Nagy multiplicitású adatok

- Az első jelek a kollektív felfúvódásra a nagy multiplicitású kísérletekben volt, ahol a He szögeloszlása aszimmetrikus reakciók (C + Ar) esetén nem volt izotróp, oldalirányú maximumot mutatott
- Ne + U esetén a könnyű fragmentumoknál (p, d, t) is megfigyelték
- A hidrodinamikai modellek helyes jóslatokat tettek
- E_{lab} > 500*MeV* a relativisztikus effektusok fontosak lesznek

Allapotegyenlet Magreakciól alacsony energiától nagy energiáig

3. rész – Nagy multiplicitású adatok

- Az előre emittálás elnyomott
- Nagyobb elektromos töltésűekre még inkább jellemző az oldalirányú maximum, pl.: α részekre
- ²H,³ H-re élesebb maximum, mint a proton esetén
- ▶ Nem számolható lényeges impakt paraméter függés → nem használható a részletek kiderítésére a φ-re átlagolt hatáskeresztmetszet
- Tegyünk fel azimutális függést

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

3. rész – Event by event analízis

- A nagy kollektív longitudinális és transzverz impulzusátadás a "résztvevők" lökéshullámbeli nagy nyomásától alakul ki
- Így kinyomva a nukleáris anyag egy részét ellenkező irányokba ($\Delta \phi = 180^\circ$)
- Eszköz lehet az ÁE-hez, nevezetesen az E(ρ, Τ) függvény kiderítéséhez

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

3. rész – A reakciótermékek azimutális felbontása

- A jetek maximumai közötti távolság információt adhat az anyag transzporttulajdonságairól
- Pl.: a viszkozitás befolyásolja a kollektív áramlást
- Adható egy snapshot a mozgás-, a hőmérséklet- és a tömegeloszlásról csakúgy mint az energiáról és impulzusról az érdekes tartományban
- Ehhez mérni kell a hármas differenciális hatáskeresztmetszetet: drosθdφdE
- Ehhez szükséges a "reaction plane" ismerete, ahol a Δφ = 0°, 180°
- Ez mérhető

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

3. rész – A reakciótermékek azimutális felbontása

Persze ez függ az impakt paramétertől

- Ha a "reaction plane" meghatározott, számolhatjuk az abba eső és az azon kívüli impulzuskomponenseket
- Kiderül, hogy ha $b \approx 0 \rightarrow < p_f >= \max$.
- Egyébként az oldalirányú "flow" egyre kisebb
- Centrális ütközéseknél azonban az impulzustérbeli eloszlás szimmetrikus

^{Állapotegyenlet} Magreakció alacsony energiától nagy energiáig

- A hatáskeresztmetszettel vizsgálhatjuk a "klasszikus" mennyiségeket, a reakció végállapotbeli jeleit
- Fontos, hogy találjunk több olyan mennyiséget, amit csak az összenyomott fázisbeli állapot határoz meg
- Tudnunk kell, hogy az anyag megáll-e és összenyomódik, vagy sem
- Ilyen mennyiség lehet, a sűrűség
- Nem figyelhető meg a kísérletekben
- Mi a helyzet az impulzussal? A különböző komponensekkel más történik a reakció során. Később még előkerül

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

- Érdekes mennyiség az entrópia
- Akkor keletkezik, amikor a nukleáris anyag megáll és összenyomódik
- Amikor a sűrűség eléri a maximumát, az entrópia értéke szaturál
- A későbbi szakaszokban is van lényeges entrópiatermelődés

- Ha van viszkozitás (még) nehezebb kezelni
- Viszkózus leírás esetén entrópia keletkezik a táguló szakaszban is elhomályosítva a "tiszta" összenyomott állapotot

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

- Ehelyett vezessük be a kinetikus energiaáram tenzort (kinetical energy flow tensor)
- Vizsgáljuk eseményről eseményre az töltött részecskék impulzusait
- Ebből származtathatók fizikai menyiségek

 $F_{ij} = \sum \frac{p_i(\nu)p_j(\nu)}{2m_{\nu}}$

 A globális változók érzékenységét szeretnénk megkapni az ütközés dinamikájától függően

$$F_{ij} = \sum_{\nu} \frac{p_i(\nu)p_j(\nu)}{2m_N} + \delta_{ij}E_T/3$$

- F_{ij} sajátvektorait megfigyelve: $\lambda_n = \overline{\lambda}_n + E_T/3$
- Bevezetjük az R₁₃ = $\frac{\lambda_1}{\lambda_3}$ és θ_F = arccos($\mathbf{e} \cdot \mathbf{z}$) mennyiségeket

^{Állapotegyenlet} Magreakció alacsony energiától nagy energiáig

- Amikor a két nukleon megközelíti egymást, a KET nagyon "feszített"
- Aztán az anyag megáll, vagyis a tágulási hányados csökken
- Ezalatt a $\theta = 0$
- A tágulás alatt a kinetikus tágulás dominál
- Hidrodinamikai modellben:
 - ▶ $heta_{F} \in [0^{\circ}, 90^{\circ}]$ úgy, hogy $b = 0
 ightarrow 90^{\circ}$, $b > 0
 ightarrow 0^{\circ}$
 - A tágulás megadja a p_l és a p_t impulzusátadásokat az ütközésben
 - Ezért használható a nyomás megfigyelésére a nagysűrűségű szakaszban:

$$p_t = \int_t \int_f P(\rho, S) df dt$$

- Ha a tágulás karakterisztikája direkt függ a nyomástól, várható, hogy a függésből az ÁE keménységére következtethetünk
- Ehhez az R₁₃(E_{lab}) kell megfigyelni. A számolásból erős függés jön ki

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

- Tekintsünk egy aszimmetrikus példa folyamatot
- Ar + Pb 800MeV/n, GSI-LBL- Heidelberg kollaboráció
- Hidrodinamikai számolás erre a mérésre relativisztikus kinematikával

$$F_{ij} = \sum_{\nu} w(\nu) p_i(\nu) p_j(\nu) \tag{1}$$

- Ezt a résztvevő részek határozzák meg
- Kísérletileg csak a töltött részekre az előremutató félgömbben (résztvevők CM rendszerében)
- Transzverz energia:

$$E_{t} = \sum_{\nu} \left[\sqrt{p_{t}^{2}(\nu) + m^{2}(\nu)} - m(\nu) \right]$$
(2)

csökken az impakt faktor növelésével mind a hidro, mind más modellekben

Lehet trigger jel!

^{Állapotegyenlet} Magreakció alacsony energiától nagy energiáig

- F_{ij} -t a $w(\nu)$ súlyfüggvény diagonalizálja
- $w(\nu)$ választható: $w(\nu) = \frac{1}{2m}$, $\frac{1}{|p(\nu)|}$, $\frac{1}{|p(\nu)|^2}$
- Kísérleti kérdés, elméleti szempontból egyenértékűek
- Ekkor azonban nem R₁₃-t, hanem R₁₂-t mérik
- Növelve az E_t-t, azaz csökkentve az impakt paramétert θ_F nő, azaz a tágulásban egyre inkább az oldalirányú tágulás játszik szerepet
- Eközben R₁₂ csökken, ami itt nagyobb izotrópiát jelent

^{Állapotegyenlet} Magreakció alacsony energiától nagy energiáig

- Sajnos egy javított, kvantitatív modell nem használható ebben a szakaszban
- Egyrészt a "finite-particle" effektus nincs igazán jól figyelembe véve, ami a hidrodinamikai számolást elrontja
- Azzal, hogy csak egy félgömböt vizsgáltunk, nem vettünk mindent figyelembe

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

- Az ÁE problémája továbbra is fennáll
- Hasonlítsuk össze a hidrodinamikai modell jóslatait az adatokkal több különböző ÁE esetén
- Mikroszkópikus megközelítés: NFM és VUU
- NFM-ben megint csak a kinetikus energiaáram tenzort használjuk
- A tágulási szög kvalitatív tulajdonságai hasonlóak, mint korábban: az impakt faktor növelésével elkezd nőni 0°-tól 90°-ig
- Jósol a modell egy csúcsot a szögeloszlásban, mely jóslat a mért adatokkal kvalitatív egyezést mutat

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

- Mérhető a sűrűség, mint az energia függvénye
- A sűrűség maximuma nem nagyon függ a nukleonszámtól, de erősen függ az ÁE-től
- Nagyobb sűrűségek lágyabb ÁE-ből származnak
- Fontos eredmény: a tágulási szög függ erősen függ az ÁE-től
- A csúcs magassága függ az ÁE-től, perzse
- ► Lágyabb ÁE → kisebb csúcs
- De hogy függ a csúcs a bombázó energiától?
- Fix impakt paraméternél (b = 3fm) 400 MeV/n energiánál szaturál, onnan nem emelkedik az energia növelésével
- Azonban erősen függ a nukleonszámtól
- Könnyen érthető: szimmetrikus esetben a magok hasonló sűrűségűek, magasabb nukleonszámnál több ütközés történik

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

- Az ÁE hatása vizsgálható az összenyomás függvényében is
- Alacsony impakt paraméternél statisztikai okokból nem lehet semmi értelmeset mondani
- A középső tartományban van egy kis shift a csúcsban a kis szögek felé az összenyomás csökkenésével
- Így az ÁE kvalitatíve leírja az adatokat, de az aszimmetrikus rendszerek kevésbé érzékenyek az egyenlet részleteire

^{Állapotegyenlet} Magreakciól alacsony energiától nagy energiáig

Allapotegyenlet Magreakciól alacsony energiától nagy energiáig

Lökös Sándor

Köszönöm a figyelmet!